
GUIDE TO
VULNERABLE AND
OUTDATED
COMPONENTS
WHAT ARE THE STEPS TO KEEP
YOUR WEB APP OR API SAFE
FROM SUCH VULNERABILITY

What are Vulnerable and
	 Outdated Components
Types of Vulnerable and
	 Outdated Components
Severity Level of Vulnerable and
	 Outdated Components
Identify Vulnereable and Outdated

Components with Crashtest
Vulnerable and Outdated Compo-

nents Prevention Techniques
Best Practices in Preventing
	 Vulnerable and Outdated
	 Components
Secure Web Apps Agains Vulnerable

and Outdated Components

3

4

4

5

5

6

7

GUIDE FOR PREVENTING

VULNERABLE AND
OUTDATED COMPONENTS

Table of Contents

Modern applications follow an API-based architecture to enforce agility, where the software
is composed of multiple logically distinct components. While exchanging data and func-
tionality through APIs, these components are maintained independently and reused bet-
ween various applications. In such complex architectures of multiple components, many
vulnerabilities often result from the lack of appropriate component validation. Vulnerable
and outdated components often introduce security issues unknown to developers, making
them soft targets for hackers looking to exploit a vulnerable system.

This guide teaches outdated and vulnerable components, how they impact an application
stack, their severity, and prevention techniques.

INTRODUCTION TO THIS GUIDE

www.crashtest-security.com | 2

WHAT ARE VULNERABLE AND OUTDATED
COMPONENTS?

Vulnerable components contain security vulnerabilities that attackers exploit to
gain access to sensitive data or the entire system. While a complex application
stack may have numerous components, web servers, databases, and operating
systems are the most common targets of cyber attacks.

On the other hand, outdated components are no longer supported by the vendor.
As a result, such components lack security patches addressing uncovered vulnera-
bilities, making them low-hanging fruit for threat campaigns.

Vulnerabilities over such components may exist for several years before they are
discovered, fixed, or disclosed. Sometimes, a vulnerability may not even be identi-
fied until it has been exploited. Some of such vulnerabilities include:

Code injection vulnerabilities occur when vulnerable components fail to distinguish
between malicious user data and code. To orchestrate injection attacks, hackers
identify components that accept user inputs as part of an executable command
and then supply malicious code to manipulate the application environment and
logic.

As modern applications rely on APIs to exchange data and functionality across
components, security misconfigurations such as lack of input sanitation allow thre-
at actors to inject malicious data over API requests, subsequently enabling them to
manipulate and obtain unauthorized access to remote resources.

INJECTION VULNERABILITIES

Buffer overflow vulnerabilities occur when the amount of data in a buffer memory
exceeds the assigned storage capacity. Attackers abuse buffer overflow vulnerabi-
lities to corrupt and manipulate data in adjacent memory buffers since overflowing
data flows into these memory units. In instances where attackers gain access to a
vulnerable component‘s memory layout, they can overwrite executable codes sto-
red in buffers with malicious scripts that allow them to cause system crashes, alter
security controls or obtain escalated privileges for deeper attacks.

BUFFER OVERFLOWS

Cross-site scripting is one of the most critical security risks for modern web appli-
cations, as the attack technique enables threat actors to inject malicious scripts
into trusted websites.

CROSS-SITE SCRIPTING

www.crashtest-security.com | 3

A common approach is the stored cross-site scripting exploit, where attackers
embed malicious scripts into vulnerable versions of third-party components for
prolonged misuse of component vulnerabilities. When application components are
not scanned or updated regularly, they are prone to become vectors for advanced
persistent threats that may eventually affect multiple users and layers of the tech
stack.

In complex projects, the lack of visibility of third-party components remains a per-
sistent challenge. Such instances lead to the use of vulnerable open-source soft-
ware and the failure of security patching and regular updates.

Types of vulnerable and outdated components are categorized and mapped to the
following three Common Weaknesses and Enumerations:

•	 Failure to maintain components - Flaws that occur due to the presence of un-
used features along with insufficient patch management and other preventative
maintenance controls on modern application development pipelines

•	 Out-of-date support systems - Relying on outdated versions of software pa-
ckages in the deployment

•	 Component misconfiguration - Third-party package components causing con-
flict with the overall system configuration

TYPES OF VULNERABLE AND OUTDATED
COMPONENTS

Moving up three spots from the 2017 list, the vulnerability of the vulnerable and
outdated components is now ranked number 6 on OWASP‘s Top 10 list of 2021.
The security flaw has an average weighted exploit of 5 (moderate) and an ave-
rage weighted impact of 5 (moderate).

Although the vulnerability has a low average incidence rate (8.77%), it is attributed
as a vulnerability that poses serious security risks with an average coverage of
22.47%. This is mainly because when outdated components are run on elevated
privileges, a successful exploit of its vulnerabilities results in severe compromise of
the entire framework.

Consequences of successful attacks on vulnerable and outdated components
include:

•	 Mass disclosure of records intended for private access
•	 Distributed Denial-of-Service
•	 Remote Code Execution attacks
•	 Data integrity violations

VULNERABLE AND OUTDATED COMPONENTS -
SEVERITY LEVEL

www.crashtest-security.com | 4

https://crashtest-security.com/stored-csrf-attack/
https://crashtest-security.com/common-weakness-enumeration/
https://crashtest-security.com/owasp-top-10-2021/

Crashtest Security, with its suite of vulnerability scanners, helps security teams
expedite the process of detecting and identifying vulnerable components of an
application stack. Some scanners offered by Crashtest Security to help identify
security issues in vulnerable and outdated components include:

•	 OWASP Scanner - Tests all software packages against the latest OWASP Top
10 vulnerabilities and their mapped CWEs

•	 API Vulnerability Scanner - Checks for safe API implementation and raises an
alert if the interface includes misconfigured HTTP directives

•	 Command Injection Scanner - Validates inputs such as user-supplied URLs,
message forums, and comment sections to determine whether the application
is vulnerable to code injection attacks.

•	 Microservices Scanner - Checks for common vulnerabilities on all container-
ized services and functionalities

•	 XSS Scanner - Scans software components for cross-site scripting attack
vectors

Crashtest Security, with its automated penetration testing, also enables security
researchers to simulate an entire threat campaign and assess how attackers may
leverage vulnerable and outdated components in the real world. Through actiona-
ble security reports, Crashtest Security also helps enhance security posture, rapid
assessment, and threat mitigation at the component level.

IDENTIFY VULNERABLE AND OUTDATED
COMPONENTS WITH CRASHTEST SECURITY

While organizations may choose to adopt several modern tools and practices to
prevent outdated component vulnerabilities, here are some techniques that ensure
the application framework is built to prevent vulnerable and outdated components
at the foundation level:

VULNERABLE AND OUTDATED COMPONENTS -
PREVENTION TECHNIQUES

Software Composition Analysis (SCA) involves identifying and manifesting every
open-source software component in the application code. While performing SCA,
it is also recommended to test each of such components for known security flaws
and vulnerabilities. An ideal approach to doing so is to look for insecure design
flaws that may arise from integrating multiple open-source software packages
and assess if those collectively impact the security compliance, posture, and code
quality of the environment.

SOFTWARE COMPOSITION ANALYSIS

Since most third-party components run privileged functions, they operate with
root permissions. In such instances, when an attacker gets hold of one vulnerable
component may result in the attacker obtaining access to other components of the
application.

MULTI-FACTOR AUTHENTICATION (MFA)

www.crashtest-security.com | 5

https://crashtest-security.com/owasp-scanner/
https://crashtest-security.com/api-security-tool/
https://crashtest-security.com/command-injection-scanner/
https://crashtest-security.com/testing-microservices-tool/
https://crashtest-security.com/xss-scanner/

To prevent such interwoven chain abuses, multi-factor authentication helps reduce
the attack blast surface while boosting critical access control measures by admi-
nistering more than one authentication mechanism to grant resource permissions
at the component level.

Unpatched versions of software components used in deployments are a favorite
target of most threat campaigns. Such components often contain known vulnera-
bilities, making it easy for threat actors to orchestrate successful exploits. Patch
management ensures that outdated versions of components are either replaced or
upgraded with secured versions. A scheduled patch management lifecycle enables
security teams to proactively prevent insecure default configurations, data integrity
violations, and other random threats introduced with unsecured third-party compo-
nents.

PATCH MANAGEMENT

Secure design patterns enforce the adoption of best practices to develop secure,
reusable applications that are purpose-built to prevent common vulnerabilities and
attack vectors. These design patterns help security teams avoid known security
flaws in application code and define a roadmap of actions to follow in case of
a successful exploit. Embracing secure design principles also helps outline the
blueprint of an effective patch management lifecycle while ensuring no vulnerable
components are used across any stages of the SDLC.

SECURE DESIGN PATTERNS

Some commonly recommended practices in preventing outdated and vulnerable
components include:

BEST PRACTICES IN PREVENTING
VULNERABLE AND OUTDATED COMPONENTS

Installing unnecessary features and plugins complicates maintaining a robust se-
curity posture since an unnecessarily extended setup adds to the manual overhead
of monitoring and patching vulnerabilities. New software packages also broaden an
application stack‘s attack surface while introducing new system-level conflicts that
can be misused for possible attacks. As a recommended practice, it is essential to
audit the setup regularly to identify only critical features and plugins installed while
discarding unused features to reduce the attack surface.

DEPLOY WITH A MINIMAL SETUP

Adopting a microservices architecture allows software teams to achieve adequate
segregation between different components of a workload. The architecture helps
enhance application performance and reduces the blast radius of a successful
exploit.

EMBRACE MICROSERVICE-BASED ARCHITECTURE

www.crashtest-security.com | 6

A service-oriented logical separation enables the isolation of insecure components
and mitigation of security threats without impacting user experience or application
functionality. Microservice-based isolation also protects application servers from
direct attacks since software teams can enforce discrete security controls, such as
cryptographic algorithms at the service and component levels.

Start 2-Week Trial for Free

Crashtest Security helps improve security posture and mitigate critical securi-
ty risks through automated penetration testing and vulnerability scanning. With
Crashtest Security, organizations can automate threat modeling to proactively spot
security defects and prevent vulnerable and outdated component attacks.

To know more about how Crashtest Security can help reduce the risk of being ha-
cked through vulnerable, third-party components, try a free 14-day trial here.

SECURING WEB APPLICATIONS AGAINST
VULNERABLE AND OUTDATED COMPONENTS
WITH CRASHTEST SECURITY

ENFORCE CONTINUOUS MONITORING AND VULNE-
RABILITY SCANNING

Monitoring and vulnerability scanning form a critical quantum of the threat mode-
ling tool stack and are often considered the first line of defense against unknown
threats. More importantly, tackling new attack vectors in a changing threat land-
scape remains a continuous challenge. As a recommended practice, adopting
a comprehensive monitoring framework that includes the right tools to evaluate
failures and identify security defects as they arise is crucial. Regular monitoring
helps detect suspicious activities in real time, such as access control violations and
malicious API requests.

www.crashtest-security.com | 7

https://crashtest.cloud/registration?_ga=2.19885692.574898369.1648031630-212080000.1648031630

WWW.CRASHTEST-SECURITY.COM

