
GUIDE FOR
PREVENTING
SOFTWARE & DATA
INTEGRITY FAILURE
WHAT ARE THE STEPS TO KEEP
YOUR WEB APP OR API SAFE
FROM SUCH VULNERABILITY

What are Software & Data Integrity
Failures?

Types of Software & Data Integrity
Failures

Software & Data Integrity Failures -
Severity Level

Identify Software & Data Integrity
Failures

Software & Data Integrity Failure
Prevention Techniques

Prevent Software & Data Integrity
Failures - Best Practices

Maintaining Software & Data Integrity
with Crashtest Security

3

3

5

5

6

7

8

GUIDE TO

SOFTWARE & DATA INTEGRITY
FAILURE PREVENTION

Table of Contents

Software integrity represents a critical aspect of application security that ensures
code and data are protected from unauthorized alterations while keeping them
error-free and reliable. Applications with high levels of integrity are often conside-
red accurate, complete, consistent, and secure throughout the deployment and
development life cycle. Software and data integrity failures encompass a broad
category of application security threats that occur when the application‘s code and
infrastructure are exposed to unauthorized changes that lead to a system-wide
compromise.

This guide discusses the software and data integrity failure vulnerability, typical
examples, its impact, and possible prevention strategies.

INTRODUCTION TO THIS GUIDE

www.crashtest-security.com | 2

Most modern applications are built using plugins, libraries, and modules from
official sources and unknown repositories. A compromise in one repository allows
attackers to introduce unauthorized files into the software delivery cycle as an ad-
vanced persistent threat. Such models often include vulnerable components in an
existing stack without an established review process and extensive integrity checks
for software components.

Software and Data Integrity Failures are commonly found in application installa-
tions that lack protections against integrity violations. These application security
weaknesses typically arise when developers fail to verify the source of objects
from untrusted repositories, eventually inheriting platform-level misconfigurations
into an existing stack.

The focus on automation also creates a broad attack surface, as modern update
mechanisms often download code and execute it without checking for security
misconfigurations. Threat actors can exploit such flaws to introduce corrupted
payloads into the deployment pipelines, allowing them to run malicious programs
or relay unwanted commands to the application server.

Integrity failures are classified into three primary categories:

•	 Human error - These occur when the application‘s users unknowingly enable
integrity violations through abusive use of in-built functionalities

•	 Transmission errors - These result from the alteration of data and application
code while in transit

•	 Malware and viruses - malicious code and executable programs that introduce
unwanted functionality into the application

WHAT ARE SOFTWARE AND DATA INTEGRITY
FAILURES?

TYPES OF SOFTWARE AND DATA INTEGRITY
FAILURES

Types of data and software integrity risks include:

DESERIALIZATION OF UNTRUSTED DATA

Deserialization is reconstructing a data structure into its original form from a se-
quence of byte streams to instantiate the object for consumption. Insecure dese-
rialization occurs when the application deserializes user-supplied objects without
adequate validation for the data supplied.

www.crashtest-security.com | 3

With insecure deserialization, attackers can manipulate serialized objects with
the sole intention of passing malicious inputs into the application logic. Attackers
can even replace the original object with an object from an entirely different class.
Insecure deserialization of untrusted data allows threat actors to reuse the existing
source code, enabling the addition of various other exploits, such as remote code
execution and object injection attacks.

AUTO-UPDATE FUNCTIONALITY

Most development frameworks ship with the ability to check for new updates
and download and install them without human intervention. While the automatic
update process improves developer productivity by eliminating manual download
and installation procedures, it allows attackers to include malicious updates in the
deployment pipeline. Most software update mechanisms lack an update authen-
tication functionality, allowing the inclusion of components from untrusted sites.
This opens up the pipeline to exploits such as malicious code injection and a man-
in-the-middle attack.

RELIANCE ON COOKIES WITHOUT VALIDATION
AND INTEGRITY CHECKING

INCLUSION OF FUNCTIONALITY FROM AN UN-
TRUSTED CONTROL SPHERE

This flaw occurs when the application imports executable software or functionality
from an external domain without checking for Subresource Integrity. In such cases,
the application downloads functionality it does not have direct control over, such as
libraries and web widgets, but only performs insufficient integrity validation.

The entire application remains susceptible to security threats if the included func-
tionality contains security vulnerabilities. The included functionality could consist
of outdated components and be spoofed or altered while transmitted from the
source. Depending on the injected functionality, consequences of this weakness
include unauthorized information disclosure, open redirects to malicious programs,
and stealing of user cookies, among others.

This flaw occurs in applications that rely on cookies for critical security controls
but fail to ensure that the cookie data is valid for the associated user. In most mo-
dern applications, developers perform sufficient validation against request and URL
parameters while assuming that attackers cannot obtain and alter the values of
cookies. Attackers can modify cookies inside the browsers or implement client-si-
de code outside the browser. Modifying cookies allows hackers to bypass access
control mechanisms for unauthorized access to critical resources and data.

www.crashtest-security.com | 4

SOFTWARE AND DATA INTEGRITY FAILURES -
SEVERITY LEVEL

The software and data integrity vulnerability ranks number 8 on OWASP‘s Top
10 - 2021. Attacks targeting security vulnerability have an average incidence rate
of 2.05%. The incidence rate and average weighted exploits are attributed to a low
severity since exploits rarely work without some modification to the underlying
source code.

The software integrity security misconfiguration has a high average weighted
impact of 7.94, as a lack of integrity checking results in the exposure of an entire
software supply chain. Impacts of a successful attack include:

•	 Unauthorized information disclosure
•	 Command and object injection attacks
•	 Man-In-The-middle attacks
•	 Installation and execution of malicious programs
•	 Compromise of the entire deployment pipeline

The vulnerability has also been mapped to 1152 common vulnerabilities and expo-
sures and 10 common weakness enumerations. These weaknesses include:

•	 CWE-345: Insufficient Verification of Data Authenticity
•	 CWE-353: Missing Support for Integrity Check
•	 CWE-426: Untrusted Search Path
•	 CWE-494: Download of Code Without Integrity Check
•	 CWE-502: Deserialization of Untrusted Data
•	 CWE-565: Reliance on Cookies without Validation and Integrity Checking
•	 CWE-784: Reliance on Cookies without Validation and Integrity Checking in a

Security Decision
•	 CWE-829: Inclusion of Functionality from Untrusted Control Sphere
•	 CWE-830: Inclusion of Web Functionality from an Untrusted Source
•	 CWE-915: Improperly Controlled Modification of Dynamically-Determined Ob-

ject Attributes

IDENTIFY SOFTWARE AND DATA INTEGRITY
FAILURES WITH CRASHTEST SECURITY

Crashtest Security Suite integrates seamlessly with most modern frameworks for
getting started with automated vulnerability scanning and detecting integrity failu-
res in minutes. Through several automated security scanners, Crashtest Security
helps identify different categories of software integrity violations. These include:

www.crashtest-security.com | 5

https://crashtest-security.com/owasp-top-10-2021/
https://crashtest-security.com/owasp-top-10-2021/
https://crashtest-security.com/common-weakness-enumeration/

•	 Command injection scanner - Scans a web application for security flaws that
can be exploited to inject arbitrary commands, ensuring the application server
only accepts trusted commands.

•	 Privilege escalation scanner - Prevents threat actors from acquiring elevated
privileges that allow them to access and modify critical resources and protec-
ted data.

•	 HTTP header scanner - Checks whether the host header parameter has been
altered while in transit, which forces the application server to include malicious
content in responses.

•	 SQL injection scanner - Checks whether the application‘s databases are
protected from threat actors looking to obtain unauthorized data by issuing
malicious commands to the database.

SOFTWARE AND DATA INTEGRITY FAILURE
PREVENTION TECHNIQUES

Security measures to prevent software and data integrity failures include:

MULTI-FACTOR AUTHENTICATION

Multi-factor authentication (MFA) requires the fulfillment of multiple authentication
parameters using different credential categories to verify a user‘s identity. This
helps administer a layered defense mechanism that makes it difficult for threat
actors to access a protected resource. In the eventuality of the breach of one of the
critical security controls, attackers remain restricted from accessing or modifying
the target resource since they still have one or more barriers to breach.

Authentication controls used in MFA typically fall into three categories:

•	 Knowledge factors - This category of authentication factors typically requires
the entity to answer a personal security question. Knowledge-based factors
include passwords, personal identification numbers, and one-time passwords,
among others.

•	 Possession factors - These factors require having something in their posses-
sion before they can be authenticated. Possession factors include key fobs,
badges, tokens, subscriber identity module (SIM) cards, etc.

•	 Inherence factors - These factors check the user‘s biological features before
logging them into the system. Inherence factors consist of biometric verifica-
tion methods, such as fingerprint scans, retina scans, voice authentication,
digital signature scans, and facial recognition.

www.crashtest-security.com | 6

SUPPLY CHAIN SECURITY MANAGEMENT
PROGRAMS

SECURE DESIGN PATTERNS

Integrity failures are often a result of insecure design practices. Secure design pat-
terns help reduce the chances of design flaws in the code and help development
teams prepare a mitigation plan in case the vulnerabilities are identified in produc-
tion. Secure design patterns also include provisions such as the principle of least
privilege, strong security protocols, and incident response plans, which help avoid
exploits and reduce the impacts of an attack.

BEST PRACTICES IN PREVENTING SOFTWARE
AND DATA INTEGRITY FAILURES

Best practices to avoid integrity failures in modern applications include:

USE DIGITAL SIGNATURES TO VERIFY SOFTWARE
COMPONENTS

Modern software delivery pipelines promote the combination of loosely-coupled
components that contain open-source software. Software supply chains require
implementing security and risk management best practices to help protect the ap-
plications from potential security risks. Given the size and scale of modern applica-
tion deployments, a supply chain security tool can help implement adequate supply
chain security. Popular supply chain security management solutions include:

•	 Crashtest Security Suite
•	 Snyk
•	 OWASP Dependency-Check Project
•	 OWASP CycloneDX
•	 OpenVAS
•	 OpenIAM
•	 OWASP ZAP
•	 AlienVault OSSIM
•	 Metasploit

Code signing enables software users to check the integrity of software compo-
nents using hash functions. This allows developers to verify if specific application
components are certified by an electronic signature of a trusted source. These
signatures follow public key infrastructure patterns that facilitate smoother com-
ponent verification, eventually enabling integrity checks without compromising the
agility of the delivery pipeline.

www.crashtest-security.com | 7

https://crashtest.cloud/registration?utm_campaign=nav

ENFORCE CI/CD PIPELINE SEGREGATION AND
ACCESS CONTROLCOOKIES

Crashtest Security Suite is an online SaaS offering that enforces automated black
box penetration testing while simulating scenarios of integrity failures to aid threat
modeling. The platform integrates with the most significant frameworks seamless-
ly, which helps spot security defects before threat actors do.

With its quick security assessments, actionable security reports, and low false
positives, Crashtest Security enables proactive prevention of attacks targeting
integrity failures.

To know more about how Crashtest Security can help maintain your application
stack‘s software and data integrity, try a free 14-day trial here.

MAINTAINING SOFTWARE AND DATA
INTEGRITY WITH CRASHTEST SECURITY

Start 2-Week Trial for Free

Security professionals should decouple all development and deployment pipeline
functions to ensure a successful exploit has minimal effect on the overall applica-
tion infrastructure. When configuring access rules, it is also recommended to admi-
nister robust access roles and leverage the law of least privileges to ensure users
can only access the functionalities needed for their tasks and are not able to trick
the system into escalating privileges.

ONLY USE COMPONENTS FROM TRUSTED
REPOSITORIES

Ensure that the application‘s dependencies and libraries are pulled only from trus-
ted repositories. Where possible, use self-hosted repositories configured with strin-
gent security controls. When using public repositories, only consume resources
that have verified digital signatures to ensure they are from trusted sources.

ENFORCE SECURE CODE REVIEWS

a All core components used in the development pipeline should undergo a vigo-
rous, independent, automated application-level review to ensure it is free of any
security vulnerability that impacts its integrity. Security professionals should also
inspect every line of code for cyber threats, ensuring only those components that
meet strict integrity checks are eventually pushed to production.

www.crashtest-security.com | 8

https://crashtest.cloud/registration?_ga=2.19885692.574898369.1648031630-212080000.1648031630

WWW.CRASHTEST-SECURITY.COM

