
GUIDE FOR
PREVENTING
INSECURE
DESIGN ATTACKS
WHAT ARE THE STEPS TO KEEP
YOUR WEB APP OR API SAFE
FROM SUCH VULNERABILITY

What is Insecure Design?
Types of Insecure Design Attacks
What is the severity level of
 Insecure Design Attacks?
Identifying Insecure Design
 Attacks
Insecure Design Vulnerability
 Prevention Techniques
Best Practices in Preventing
 Insecure Design Attacks
Detecting Insecure Design Attacks

with Crashtest Security

3
3

5

5

6

7

8

GUIDE FOR

INSECURE DESIGN
ATTACKS

Table of Contents

To tackle the continuously changing threat landscape, it is recommended to adopt
preventive approaches in the initial stages of application development to help
reduce the attack surface and prevent inherent design flaws. Some commonly
embraced security controls encompass secure design patterns, threat modeling,
and reference architectures that help mitigate application vulnerabilities in earlier
stages of the software development lifecycle. An insecure design flaw is an appli-
cation security risk that arises from the lack of effective implementation of these
security controls. This guide discusses insecure design vulnerabilities, their types,
severity level, and best prevention practices.

INTRODUCTION TO THIS GUIDE

www.crashtest-security.com | 2

The insecure design includes over 40 vulnerabilities that introduce application
architecture and design flaws. Some of the most common insecure design flaws
include:

Insecure design is a broad vulnerability set encompassing multiple implementa-
tion defects introduced during an application‘s design phase. The vulnerability set
covers over 40 Common Weaknesses and Enumerations and critical security risks
in application architecture.

When developing business logic, design flaws often stem from ignoring ‘shift-
left’ practices and the lack of sufficient profiling. Contrary to popular belief, flaws
introduced by insecure design cannot be fixed in the implementation stages; hence
it is recommended to ensure such flaws are addressed during the initial stages of
design.

WHAT IS INSECURE DESIGN?

TYPES OF INSECURE DESIGN
VULNERABILITIES

UNPROTECTED STORAGE OF CREDENTIALS

Some web deployments include plaintext storage of user passwords that may
compromise system access through unauthorized access to user accounts. Due to
improper configuration, user credentials get stored within the web server’s memo-
ry, configuration manifests, or application properties, allowing malicious users to
access and exploit legitimate accounts.

EXTERNAL CONTROL OF PATH OR FILE NAME

CWE-73 represents a highly-susceptible form of insecure design that allows malici-
ous users to modify critical flows or sensitive files crucial to application logic. This
flaw introduces file/path manipulation errors when the application relies on user
input to control key flows and influence the file paths used in software operations.
Attackers leverage file manipulation errors to specify paths or resources used in
these operations, granting them privileges that are otherwise restricted.

STORING PASSWORDS IN A RECOVERABLE
FORMAT

Some applications rely on recoverable encryption for passwords, which provides
no significant benefits over storing cleartext passwords. Malicious users can
leverage insufficient credential recovery workflows to orchestrate password reuse
attacks. Passwords that can be recovered directly or discovered through a brute
force search of available information can also offer hackers unlimited access to
user accounts.

www.crashtest-security.com | 3

This vulnerability is commonly found in intermediate agents between web servers
and clients, such as HTTP proxies and firewalls. When an intermediate agent inter-
prets client requests inconsistently, the flaw allows hackers to smuggle malformed
requests to one entity without the other entity being aware. In some cyber-attacks,
malicious users can also add a new, malicious request to persistent data flow via
HTTP pipelining, which the intermediate agent interprets as part of the first legiti-
mate request, enabling undetected HTTP request smuggling.

UNRESTRICTED UPLOAD OF FILES

This vulnerability occurs when an application fails to validate the file extension,
eventually allowing an attacker to transfer or upload a malicious file to be proces-
sed within the software environment. Uploaded files introduce critical security
risks, including broken access controls and complete system takeover. In instan-
ces where the application fails to implement restrictions on the number or size of
uploaded files, attackers may initiate a denial of service attack by overloading the
web server or database.

INCONSISTENT INTERPRETATION OF HTTP
REQUESTS

Most deployments rely on client-side caching to improve performance by pooling
previously processed information locally. This reduces the time required to ini-
tialize, process, and access information requested by users. Design flaws in the
caching process often leave these resources available to malicious actors. Some
clients expose cache data in public terminals, allowing hackers to access and ex-
ploit sensitive information such as credit card numbers and login credentials.

USE OF A BROWSER CACHE CONTAINING
SENSITIVE INFORMATION

This weakness results from the lack of isolation between application logic or functi-
ons that require different levels of rights, privileges, or permissions. Additionally, in
some web environments, security professionals and development teams use only
one factor for a security decision, reducing the effectiveness of integrity checks.
Once an attacker has gained unauthorized access to a single functionality, they can
orchestrate vertical or horizontal privilege escalation, allowing them to increase the
exploit surface and blast radius of their attack.

INSUFFICIENT COMPARTMENTALIZATION

A severe vulnerability is found in applications that store critical state information
about the software or user sessions in a location that is available to attack.

EXTERNAL CONTROL OF CRITICAL STATE DATA

www.crashtest-security.com | 4

If the application allows the hackers to modify this state data without being detec-
ted, they can craft malformed requests for restricted resources or perform unaut-
horized actions. Applications store state information in various locations, such as
a web form field, input argument, database record, or a publicly accessible cookie.
Attackers also use information stored in these locations to change state informa-
tion for security controls, creating an unforeseen attack vector.

Insecure design vulnerabilities rank fourth on the OWASP 2021 Top 10 vulnerabi-
lities list (A04:2021). The exposure is mapped to 40 Common Weaknesses and
Enumerations, with an average incidence rate of 3%. Insecure design flaws have an
average weighted exploit score of 6.46 (moderate) and an average impact score of
6.78 (medium).

Some potential effects of attacks targeting insecure design flaws include:

Loss of income - Attackers can exploit insecure design vulnerabilities to threaten
the model of a business process and avoid revenue-generating paywalls
User and system enumeration - Attackers rely on exposed credentials, cached
information, file paths, and other insecure design errors to build a logical map of
application servers and user accounts. Hackers commonly use enumeration infor-
mation to create and test possible attack scenarios to achieve this.
Data breaches - By leveraging weaknesses in file path implementation, attackers
can build exploits to facilitate the disclosure of records holding sensitive informa-
tion. This information can be sent to attacker-controlled databases or used for
ransomware attacks.
Denial of service - Malicious actors can spoof web servers or databases with mul-
tiple malformed requests or by uploading malicious files that reduce the server’s
ability to handle legitimate user requests.
Advanced cyber attacks - Hackers leverage insufficient compartmentalization
errors to expand the scope of their exploit. Attackers also use compromised pass-
words to escalate privileges, targeting a more significant number of user accounts
in applications lacking strong boundaries.

INSECURE DESIGN - SEVERITY LEVEL

As insecure design flaws typically occur in the earlier stages of the software
development life cycle, it is essential to detect and identify them during the initial
design phases of application development. Some common approaches to identify-
ing insecure design vulnerabilities include:

HOW TO IDENTIFY INSECURE DESIGN?

www.crashtest-security.com | 5

When collecting business requirements for application conceptualization and de-
velopment, security teams should proactively identify various defense mechanisms
that will be leveraged to protect underlying resources and data assets. It is also es-
sential that during the design phase, the development team considers all resources
and additional components that will be exposed to the public and thereby imple-
ment integrity checks for safe access. Developers should also take into account
the separation of privilege required to ensure there are robustly secure boundaries.

REQUIREMENTS AND RESOURCE EXAMINATION

Automated vulnerability scanning can help identify insecure design flaws across all
components required to build an application. As a recommended practice, pre-
code vulnerability scanning should be performed on all infrastructure resources
identified during the requirement gathering phase to mitigate common weaknesses
and enumerations before they get used in the SDLC.

VULNERABILITY SCANNING

Pentests form the core of pre-code threat modeling, as they offer developers and
security professionals a glimpse into common patterns of attacker activity. Using
penetration tests, application design teams assess how attackers identify and
exploit insecure design flaws, allowing for proactive threat remediation.

PENETRATION TESTING

INSECURE DESIGN PREVENTION TECHNIQUES

Insecure design preventive approaches include:

Application development teams should build different tier layers to establish a
privilege separation for users that require different permissions. The segregation
should be applied to the system and network layers to enhance isolation based on
exposure and protection needs. Additionally, design teams should separate tenants
by role or rate of consumption per user to limit resource consumption by different
network entities.

TIER LAYER SEGREGATION

www.crashtest-security.com | 6

Security teams should adopt diligent threat modeling practices for all business
logic, access controls, authentication, and key flows within the application to proac-
tively identify threat patterns and related countermeasures.

THREAT MODELING

Unit tests help identify design flaws in each component/unit of code used to
design and build an application. Integration tests help identify and mitigate critical
vulnerabilities at the interface of two or more components used in the application
development cycle. These tests help application developers and security professio-
nals address design flaws before deploying code in production, which helps prevent
implementation defects from being pushed further down the deployment pipeline.

UNIT AND INTEGRATION TESTING

BEST PRACTICES IN PREVENTING INSECURE
DESIGN VULNERABILITIES

Some best practices to prevent insecure design vulnerabilities include:

Security professionals should establish a library of secure design patterns that can
be reused for comprehensive application security. These patterns should include
base design components and complementary program components that provide a
repeatable, hardened process for rapid, secure code development.

ESTABLISHING SECURE DESIGN PATTERNS

Idle features and frameworks introduce an extensive attack surface that adds to
the workload for security professionals. Using minimal libraries and frameworks
without unnecessary features, components, samples, and documentation elimina-
te avoidable attack vectors, helping achieve a secure design at the granular level.

ELIMINATING UNUSED FEATURES AND
COMPONENTS

The microservice-based design offers effective compartmentalization between
tenants, functions, and entities, which reduces the blast surface of a successful
insecure design exploit. Microservice architectures also aid granular resource ma-
nagement for easier network and system layer tier segregation.

EMBRACING MICROSERVICE ARCHITECTURES

www.crashtest-security.com | 7

DETECTING, IDENTIFYING, AND MITIGATING
INSECURE DESIGN FLAWS WITH CRASHTEST
SECURITY

The Crashtest Security Suite helps implement automated threat modeling through
continuous vulnerability scanning and black box penetration testing. With Crashtest
Security, organizations can identify common weaknesses and attack signatures for
insecure design exploits through a few simple steps. Some vulnerabilities exposed
by the Crashtest Security Suite include privilege escalation, file inclusion, HTTP
smuggling vulnerabilities (HTTP header scanner), and more.

Sign up for a free, 14-day trial to discover how Crashtest Security‘s automated
scanning helps verify the secure design of your organization‘s application stack.

Start 2-Week Trial for Free

www.crashtest-security.com | 8

https://crashtest.cloud/registration?_ga=2.19885692.574898369.1648031630-212080000.1648031630

WWW.CRASHTEST-SECURITY.COM

