
GUIDE FOR
PREVENTING
CSRF ATTACKS
WHAT ARE THE STEPS TO KEEP
YOUR WEB APP OR API SAFE
FROM SUCH VULNERABILITY

2022

What is CSRF?
What is the severity level of an

Attack?
How Crashtest Security Helps to

Identify and Mitigate CSRF
 Vulnerabilities
CSRF Prevention Techniques
Best Practices for Preventing
 CSRF Attacks
Start Automated Testing and
 Scanning Today

3

4

5
6

7

9

GUIDE FOR THE

CSRF PREVENTION

Table of Contents

Modern web applications rely on requests to retrieve and send resources the user
wants to access. These requests often include credentials associated with the
website, allowing the user to maintain a connection throughout the browsing ses-
sion. Cross-Site Request Forgery (CSRF) is a commonly exploited web applica-
tion vulnerability that modifies these requests and forces users into loading sensi-
tive information from the web application. This guide discusses what a Cross-Site
Request Forgery vulnerability is, how CSRF attacks are typically orchestrated, and
best practices to prevent such attacks.

INTRODUCTION TO THIS GUIDE

www.crashtest-security.com | 2022 | 2

A cross-site request forgery is a common form of web-security attack. The threat
actor forces authenticated users to send malicious requests to the website that
would execute the hacker‘s intended actions. The attack, also known as session
riding or a one-click attack, violates the same-origin policy by allowing the attacker
partial or complete control of user sessions. Since the victim remains the recipient
of the server’s response, most CSRF attacks do not target data extraction; instead,
they intend to interfere with the application’s behaviour by targeting state-changing
functionality.

WHAT IS CSRF?

A successful CSRF attack is dependent upon several factors, including:

• Cookie-Based Session Handling - If the application relies solely on cookies to
validate the origin of requests, an attacker can orchestrate social engineering
attacks to assume the user’s identity and further exploit it to submit malicious
requests.Installing malicious software on the user‘s machine

• Predictable Request Parameters - By conveniently speculating or obtaining
values of the parameters used by a specific request, attackers can craft malici-
ous requests to trigger unstable functionalities of an application.

• Relevant Action - A web application contains critical actions such as modify-
ing privileged users‘ permissions or changing user-specific data like passwords
or other account details. Exploiting such critical actions of a web application
allows an attacker to induce sophisticated attacks that affect the entire appli-
cation stack.

These vulnerabilities typically occur on application elements that accept unsaniti-
zed user input, included in the web server‘s dynamic response.

There are two primary approaches to encourage victims to submit the malicious
requests:

As an HTML Payload

In this approach of request forgery attack, the hacker embeds the unwanted action
as HTML in a website that they control and would wait for the user to visit their
website. They also use social engineering techniques such as sending the link
to users‘ emails, chats, social media messages, or forum comments on popular
websites, thereby encouraging victims into clicking the malicious link leading to the
website. Once the victim clicks on the link, the web server treats all requests from
the attacker’s website as legitimate requests as the session gets authenticated
with the affected user’s session cookie.

HOW CSRF EXPLOITS ARE DELIVERED

www.crashtest-security.com | 2022 | 3

Using Vulnerable HTTP Methods

In the vulnerable HTTP method approach, the exploit is self-contained and can di-
rectly provide users with the malicious URL on the vulnerable website. The attacker
employs the GET method and designs a single URL with negative parameters to
transfer and execute malicious actions.

For an application on the vulnerable domain (darwin.com), a money transfer opera-
tion using GET requests for a user Adam would look similar to:

GET http://darwin.com/transfer.do?acct=ADAM&amount=100 HTTP/1.1

If an attacker, Maria, wants to trick the average user Adam into transferring $50,000
to her account, the beneficiary and amount parameters in the URL would be chan-
ged as below to form the malicious URL:

http://darwin.com/transfer.do?acct=MARIA&amount=50000

Social engineering techniques like unsolicited emails with the HTML content or as
script/exploit URL on the bank‘s website can be further exploited to trick Adam into
loading this URL. A sample exploit URL delivered as a hidden iframe would look
similar to:

<img src=“http://darwin.com/transfer.do?acct=MARIA&amount=50000“ width=“0“
height=“0“ border=“0“>

CSRF exploits are also delivered using other HTTP methods such as PUT, DELETE,
and POST requests.

WHAT IS THE SEVERITY LEVEL OF CSRF ATTACKS?

In the OWASP 2021 Top 10 list of vulnerabilities, CSRF is categorized under the
Broken Access Control failures vulnerability, positioned at number one in the top
ten list of security vulnerabilities. The impacts of a successful attack depend on the
privileges of the victim user and assets exposed by the fake request. Few effects of
CSRF attacks include:

• Complete account takeover
• Fraud/Unauthorized fund transfer
• Data breach
• Loss of income, trust, and reputation
• Complete compromise of the application’s functionality
• Modification of account credentials

Prevalence of the CSRF vulnerability is considerably common in modern web
applications. Attackers also often leverage the fact that most web applications use
predictable parameters for actions. However, using appropriate code analysis and
penetration testing techniques, the detectability of a CSRF vulnerability is relatively
uncomplicated. Since such an identification technique requires multi-stage deli-
very of payloads and is well documented, a CSRF vulnerability‘s overall severity is
typically regarded as of average exploitability.

www.crashtest-security.com | 2022 | 4

https://owasp.org/Top10/

The Crashtest Security Suite delivers many features to help deal with CSRF vulne-
rabilities. These include:

HOW CRASHTEST SECURITY YHELPS TO
IDENTIFY AND MITIGATE CSRF
VULNERABILITIES

AUTOMATED VULNERABILITY SCANNING

Crashtest Security ships with an integrated CSRF scanning tool that autonomous-
ly examines the application to uncover CSRF vulnerabilities within web applications
and APIs. The automated CSRF scanner embeds directly into the development
workflow, enabling development, QA, and security teams to get started with scan-
ning in no time. The scanner integrates with available chat notification systems
to provide real-time alerts in case of discovered vulnerabilities.

Crashtest Security continuously benchmarks the website’s security posture
against the OWASP top ten web application security risks, facilitating the eliminati-
on of known vulnerabilities that can be used alongside CSRF in a chain attack. The
security suite implements a trusted scanning process with low false positives and
negatives for enhanced scanning confidence.

CONTINUOUS PENETRATION TESTING

Crashtest Security offers full-stack penetration testing to map the actions of
threat actors once they have discovered CSRF vulnerabilities. The platform follows
a black box testing pattern to examine the application’s security landscape the
same way an external entity would. These tests expose security misconfigura-
tions that can be used for CSRF attacks, explore the path taken by the attackers
and provide identification and mitigation measures to prevent attacks.

ENFORCE PROPER OUTPUT ENCODING

Crashtest Security automates vulnerability scanning and penetration testing to
eliminate the manual effort required in identifying and mitigating CSRF security
gaps. Automation enables the development, security, and QA teams to build rapid
and high-quality web applications, servers, and APIs with trusted security. Additio-
nally, the platform outputs actionable reports that can be shared across develop-
ment teams, clients, and executives for a secure, streamlined CI/CD workflow.

www.crashtest-security.com | 2022 | 5

SYNCHRONIZER TOKEN PATTERN

The synchronizer token pattern utilizes a token, secret and unique ID to verify the
origin of a request. Whenever the server receives a request from the user, it genera-
tes a session token to save session data within the authentication cookie. The ser-
ver returns the session token within a hidden field in an HTML form that the user
later uses as a part of their request. The web application compares the token saved
in its storage with the request tokens of a user-submitted hidden form. A match
indicates the request is from an authenticated user. As all synchronizer tokens are
secret, unpredictable, and unique for each session, tokens prevent CSRF attacks as
the attacker fails to orchestrate a valid request without a token.

DOUBLE-SUBMIT COOKIE TECHNIQUE/ STATELESS
CSRF DEFENSE

On receiving a request, the server generates a unique cryptographically strong
pseudo-random value, different from the session identifiers and stored as a cookie
on the user‘s system. All subsequent user sign-ins to the site should include this
token as a hidden value either within the request or as another request parameter.
If the cookie value and request value don‘t match on the server side, the request
is treated as illegitimate. As per the same-origin policy, this technique prevents
attackers from modifying the cookie value or reading request data sent from the
server.

Though prevention techniques may differ based on use cases, here are a few CSRF
attack prevention approaches:

CSRF PREVENTION TECHNIQUES

USING STANDARD HEADERS TO VERIFY REQUEST
ORIGIN

The technique involves using server-side validation by checking the request’s
header to ensure that the request’s source origin matches the target origin. If the
source and target origin do not match, the request violates the same-origin policy
and is discarded. The source and target origins belong in the forbidden headers
category that enables only browsers to set them and is restricted from being alte-
red programmatically. A source origin is determined by checking the origin request
header, which contains the origin URL‘s scheme, hostname,e, and porL. On the
other hand, the target origin is determined in a number of ways:

www.crashtest-security.com | 2022 | 6

• Setting the target origin value in a server configuration entry
• Using the x-forwarded-host header value
• Using the host header value

USING CUSTOM REQUEST HEADERS

Using CSRF tokens within custom request headers offers a more robust defense
mechanism against CSRF attacks as it enforces the same-origin policy restriction.
Modern browsers do not support custom headers to be transported with Cross-
Domain requests by default. Custom headers can only be added in JavaScript or
within the script’s origin. This CSRF mitigation technique is stateless and requires
no changes to the user experience, making it particularly useful for CSRF mitiga-
tion on a REST service.

UI-BASED MITIGATION OPTIONS

Few techniques require users to authenticate themselves to prevent CSRF at-
tempts during the active session. Some user-interaction based CSRF attack mitiga-
tion techniques include:

• One-time passwords
• CAPTCHA-based authorization
• Multi-factor authentication with device-based access
• Re-authentication mechanisms

SAMESITE COOKIE ATTRIBUTE

This approach uses a cookie as an attribute in the Set-Cookie response header that
allows developers to define whether a cookie is set for the same-origin or cross-ori-
gin requests. These attributes can be set to three values:

• Lax - Lax session cookies include cookies for cross-site requests only
if the request uses the GET method or the user navigated from the
origin site using a link.

• Strict - Strict cookies are only set for a first-party context (same ori-
gin) requests but aren’t initiated for cross-origin requests.

• None - Cookies are sent in requests initiated by both first-party and
third-party contexts.

BEST PRACTICES FOR PREVENTING CSRF
ATTACKS

Almost all modern programming languages/frameworks include out-of-the-box
defenses for preventing Cross-Site Request Forgery attacks. This section explores
CSRF protection best practices for major web development platforms.

www.crashtest-security.com | 2022 | 7

CSRF PREVENTION IN PHP

Using synchronizing tokens in PHP applications is a common approach to prevent
CSRF attacks. To use the synchronizing token, initially a one-time token is created
that is added to the $_SESSION variable

$_SESSION[‚token‘] = md5(uniqid(mt_rand(), true));

This token is later inserted as a hidden value into the HTML form as shown below:

<input type=“hidden“ name=“token“ value=“<?php echo $_SESSION[‚token‘] ?? ‚‘ ?>“>

Once the user submits the form, it is checked to see if the token exists in the IN-
PUT_POST. The application then compares this value with the current session
token $_SESSION[‘token’], as shown:

<?php

$token = filter_input(INPUT_POST, ‚token‘, FILTER_SANITIZE_STRING);

if (!$token || $token !== $_SESSION[‚token‘]) {
 // return 405 http status code
 header($_SERVER[‚SERVER_PROTOCOL‘] . ‚ 405 Method Not Allowed‘);
 exit;
} else {
 // process the form
}

If the token does not match or fails to exist, the PHP application returns a 405
HTTP error and exits.

CSRF PREVENTION IN WORDPRESS

WordPress integrates with several anti-CSRF plugins to strengthen CSRF preven-
tion. These include:

Comment form CSRF Protection - The plugin adds secure tokens to comment
forms and runs a validation check before accepting comments for the site, ensu-
ring input forms are secure.

Anti CSRF plugin - This plugin offers robust protection from hacking attacks by
enforcing a hidden value that is sent with a user’s cookies and requests while esta-
blishing a secure connection.

WP CSRF Protector - This plugin protects the WordPress administrator’s panel
from CSRF attacks by automatically calling methods to attach a nonce to the
HTML output.

www.crashtest-security.com | 2022 | 8

CSRF PREVENTION IN PYTHON

Python does not ship with in-built protection against CSRF attacks. However, the
platform supports the use of extensions to mitigate such vulnerabilities. The Flask
framework, for instance, includes a WTF extension to enable CSRF protection.

The snippet below shows the script used to protect a Flask application from CSRF:

From flask_wtf.csrf import CSRFProtect
csrf= CSRFProtect(app)

The command enables global protection for Flask application endpoints using the
default Flask app’s SECRET_KEY to sign the CSRF token securely.

START AUTOMATED TESTING AND SCANNING
TODAY

The Crashtest Security Suite implements vulnerability scanners to automate the
testing of web applications, APIs, and JavaScript testing to help spot common web
application security risks. The suite offers rapid security assessment that enables
C-level management, security, and DevOps teams to swiftly assess and mitigate
potential security exploits.

Contact us here to know more and start a free,14-day trial of the Crashtest Security
platform.

Start 2-Week Trial for Free

www.crashtest-security.com | 2022 | 9

https://crashtest.cloud/registration?_ga=2.19885692.574898369.1648031630-212080000.1648031630

WWW.CRASHTEST-SECURITY.COM

