
GUIDE FOR
PREVENTING
BROKEN ACCESS
CONTROL
WHAT ARE THE STEPS TO KEEP
YOUR WEB APP OR API SAFE
FROM SUCH VULNERABILITY

What is Broken Access Control?
Types of Broken Access Control
Broken Access Control - Severity

Level
Identifying Broken Access Control

With Crashtest Security
Broken Access Control Prevention

Techniques
Best Practices in Preventing
	 Broken Access Control
Broken Access Control Detection

with Crashtest Security

3
3

4

6

6

8

9

GUIDE FOR

BROKEN ACCESS
CONTROL PREVENTION

Table of Contents

Access control is crucial for modern web development as it enables the manage-
ment of how subjects (users, processes, and devices) should be granted permissi-
ons to application functions and resources. Access control mechanisms also de-
termine the level of access permitted and manifest activities carried out by specific
entities. Broken access control vulnerabilities arise when a malicious user abuses
the constraints on the actions they are allowed to perform or the objects they can
access. Attackers typically leverage access control failures to gain unauthorized
access to resources within the application, run malicious commands, or gain a
privileged user‘s permission. This guide discusses broken access control vulnerabi-
lities, the severity of associated attacks, and common prevention techniques.

INTRODUCTION TO THIS GUIDE

www.crashtest-security.com | 2

Access control issues enable unauthorized users to access, modify and delete
resources or perform actions beyond the permissions. Broken access control
encompasses various security vulnerabilities typically exploited to elevate privilege
levels. Developing secure and effective access control schemes is often a complex
undertaking that spans multiple application functions that were not designed deli-
berately but have evolved with the application. Software developers often overlook
how entities access resources when implementing these schemes, resulting in
hidden authorization flaws. Such control flaws are typically easy to discover and
exploit, making them a popular target for common attacks.

WHAT IS BROKEN ACCESS CONTROL?

Horizontal privilege escalation vulnerabilities occur when a user can obtain access
to the accounts of other regular users with the same level of permissions. An atta-
cker can leverage these vulnerabilities to get the legitimate user‘s data and use it
for a wide range of malicious acts such as ransomware attacks, financial fraud/un-
authorized money transfer, exposure of sensitive files, and data deletion. A horizon-
tal privilege escalation attack usually does not require sophisticated attack tooling
and can be orchestrated with a few simple steps, such as:

•	 By modifying the URL‘s request ID parameter with legitimate user details obtai-
ned through some form of social engineering

•	 By reviewing the application code to identify authentication vulnerabilities at
the source code level

•	 Using third-party code review tools combined with security testing tools
•	 Enumerating user accounts on Linux machines

HORIZONTAL PRIVILEGE ESCALATION

Broken access control vulnerabilities mostly lead to Privilege Escalation attacks
and are characterized by how the malicious user exploits and modifies access
rights. The primary forms of access control vulnerabilities include:

TYPES OF BROKEN ACCESS CONTROL

Vertical privilege escalation, also known as privilege elevation, allows an unauthori-
zed user to gain higher privilege levels, typically admin privileges. Privilege elevation
usually follows an initial attack, as the malicious user intends to obtain permissions
beyond what the compromised subject already has. When compared to horizontal
escalation, vertical privilege escalation attacks are more sophisticated since the
hacker is required to perform root or kernel-level modifications to obtain administ-
rative access.

VERTICAL PRIVILEGE ESCALATION

www.crashtest-security.com | 3

Once the attackers gain access rights of admin users, they can inject malicious
payloads at the code level, disrupt a sensitive business function or impact the avai-
lability of the application‘s critical resources. Some common techniques hackers
use to abuse vertical access controls include:

•	 Using the Windows sysinternals suite to create backdoor administrative users
•	 Using process injection to mimic administrative functions
•	 Leveraging directory listing vulnerabilities to disclose information about the

access control policy
•	 Using social engineering for direct access to admin accounts

CONTEXT-BASED PRIVILEGE ESCALATION

Broken access control is ranked number one on the 2021 OWASP Top 10 security
vulnerabilities for web application environments. These vulnerabilities enable atta-
ckers to masquerade as different types of users and take control of legitimate user
accounts. Depending on the actual vulnerability exploited, the consequences of a
privilege escalation attack can be severe.

Specific attack scenarios include:

•	 Use of insecure IDs - Attackers randomly guess the references for users, roles,
objects, contents, and functions. Hackers can easily manipulate access control
rules to obtain elevated privilege levels if the vulnerable application does not
sanitize the supplied user input.

•	 Forced browsing - Most applications use multiple security checks to grant
access to critical resources within the website‘s backend. Hackers use brute
force techniques to bypass the pages running authentication checks, obtaining
direct access to web resources.

•	 Path transversal attacks - The hacker includes a relative path within a URL
request, which may grant them direct access to sensitive files.

A hybrid attack in which the malicious user first obtains access to regular user ac-
counts and then uses broken vertical access controls to gain administrative rights.
Context-based privilege escalation attacks also involve business logic exploitation
that allows users to perform usually impossible actions within their security con-
text. Examples of context-based privilege escalation include:

•	 Leveraging Insecure Direct Object Reference vulnerabilities to access critical
resources via user-supplied input

•	 Using corrupt HTTP referer headers for access to functionality and sensitive
files beyond their permitted context

•	 Location-based attacks

BROKEN ACCESS CONTROL - SEVERITY LEVEL

www.crashtest-security.com | 4

•	 Cache attacks - Web browsers store frequently accessed web pages locally
within the cache memory. Attackers can obtain cache data and exploit them to
replicate administrative functions and orchestrate deeper attacks.

•	 File permissions - The file permission vulnerability affects files stored on a web
server that should not be publicly available. If the server‘s OS mechanism all-
ows these directories to be readable, attackers can modify application scripts,
configuration files, and other default files to cause operational efficiency.

Prevalence of the CSRF vulnerability is considerably common in modern web
applications. Attackers also often leverage the fact that most web applications use
predictable parameters for actions. However, using appropriate code analysis and
penetration testing techniques, the detectability of a CSRF vulnerability is relatively
uncomplicated. Since such an identification technique requires multi-stage deli-
very of payloads and is well documented, a CSRF vulnerability‘s overall severity is
typically regarded as of average exploitability.

Impacts of a privilege escalation attack include:

•	 Takeover of site administration functions
•	 Modification or deletion of site content
•	 User account takeover
•	 Delivery of malicious payloads
•	 Distributed denial-of-service
•	 Unauthorized money transfer

Access control vulnerabilities are commonly exploited, with a maximum inciden-
ce rate of 55.97% and an average incidence rate of 6.82%. Broken access control
vulnerabilities have an average weighted impact of 5.93 and an average coverage
rate of 47.72%.

Vulnerabilities associated with broken access control fall under several common
weaknesses and enumerations, including:

•	 CWE-23: Relative Path Traversal
•	 CWE-59: Improper Link Resolution Before File Access (‚Link Following‘)
•	 CWE-201: Exposure of Sensitive Information Through Sent Data
•	 CWE-219: Storage of File with Sensitive Data Under Web Root
•	 CWE-275: Permission Issues
•	 CWE-284: Improper Access Control
•	 CWE-352: Cross-Site Request Forgery (CSRF)
•	 CWE-377: Insecure Temporary File
•	 CWE-402: Transmission of Private Resources into a New Sphere (‚Resource

Leak‘)
•	 CWE-425: Direct Request (‚Forced Browsing‘)
•	 CWE-441: Unintended Proxy or Intermediary (‚Confused Deputy‘)
•	 CWE-497: Exposure of Sensitive System Information to an Unauthorized Cont-

rol Sphere
•	 CWE-538: Insertion of Sensitive Information into Externally-Accessible File or

Directory

www.crashtest-security.com | 5

Through AI-driven testing and comprehensive vulnerability scanning, Crashtest
Security Suite helps generate an in-depth analysis of a tech stack‘s security and
access control. Crashtest Security Suite includes a list of scanners that collectively
help analyze broken access control. The list of scanners includes:

•	 Privilege Escalation Scanner - A vulnerability scanner built to alert admins of
any flaws that may lead to abuse of existing access control mechanisms.

•	 CSRF Scanner - Helps prevent access control attacks using malicious paylo-
ads submitted through a trusted normal user.

•	 URL Fuzzer Scanner - Prevents privilege escalation attacks orchestrated
through forced browsing or modifying URL request parameters with a relevant
admin URL.

•	 HTTP Header Scanner - Prevents the use of modified HTTP referer headers to
access critical resources beyond the current security context.

•	 Fingerprinting Scanner - A security scanner used to detect attack surfaces that
expose application server implementations, privacy laws, and the web applica-
tion‘s access control policy to external domains.

Crashtest Security‘s automated scanning reduces manual efforts, and lets develo-
pers focus quickly on implementing secure design and threat mitigation policies.
The platform also offers actionable security reports that can be shared across
cross-functional teams, clients and executives, subsequently helping to administer
security as a shared responsibility across all verticals of an organization.

IDENTIFYING BROKEN ACCESS CONTROL WITH
CRASHTEST SECURITY

Some techniques to prevent access control issues include:

BROKEN ACCESS CONTROL PREVENTION
TECHNIQUES

MULTI-FACTOR AUTHENTICATION

Multi-Factor authentication (MFA) is a zero-trust approach to administering securi-
ty that deploys a series of access control checks that make it difficult for a hacker
to perform malicious activities even after acquiring legitimate user credentials. This
multi-layered defense strategy combines different authentication mechanisms to
validate a user‘s identity. Mandatory requirement of two or more proofs of identifi-
cation (such as authentication tokens or biometric IDs) for granting access essen-
tially blocks unauthenticated users from exploiting a normal user account, thereby
preventing access control attack attempts.

www.crashtest-security.com | 6

PROPER AUTHORIZATION SCHEMES

Using CSRF tokens within custom request headers offers a more robust defense
mechanism against CSRF attacks as it enforces the same-origin policy restriction.
Modern browsers do not support custom headers to be transported with Cross-
Domain requests by default. Custom headers can only be added in JavaScript or
within the script’s origin. This CSRF mitigation technique is stateless and requires
no changes to the user experience, making it particularly useful for CSRF mitiga-
tion on a REST service.

Apart from considering scalability and agility as the critical features of an applicati-
on, software developers should build the software with robust access controls and
security in mind. Authorization models that enable the creation of effective control
units include:

•	 Discretionary access control - Limiting access based on the subject‘s identity
and/or the groups they belong to. A subject with direct access permission can
indirectly assign that permission to other subjects of their choosing.

•	 Mandatory access control - This mechanism involves securing access to
resources based on the sensitivity of the information held by the resource. Ad-
ministrators label the data sensitivity consisting of a security level and one or
more security categories. This allows subjects to only access information held
by a resource whose security label applies to them.

•	 Role-based access control - This access control scheme divides network
subjects‘ access levels into roles. The user is attached to a role, which allows
access to the information and functionality needed to perform their duties ef-
fectively. Roles are typically built upon job competency, authority, and responsi-
bility.

•	 Attribute-based access control - Permits or denies information exchange
based on properties of the requesting entity, requested action, the context of
information exchange, or the resource requested. Some properties used in
attribute-based authorization include:

•	 Location
•	 Threat level evaluation
•	 Time of day
•	 Security measures implemented on the requested resource

UNIT AND INTEGRATION TESTS

Development teams should implement unit tests at each stage of the software
lifecycle to prevent access control flaws at the code level. Unit testing helps eva-
luate individual modules to ensure appropriate implementation of access control
on application code and uncover class-level weaknesses in privilege management.
On the other hand, integration tests cover a more extensive scope that includes
third-party and open source components used in building the application, thereby
helping to evaluate the overall security posture.

www.crashtest-security.com | 7

SESSION MANAGEMENT

Session management is a critical consideration for building secure software. As
such, the appropriate implementation of session IDs, authentication tokens, and
cookies collectively prevent session hijacking attacks. Such deployments are provi-
sioned to forcefully destroy session-associated data on an application server after
a subject logs out of the application. Implementing session timeouts that require
re-authentication and a fresh token when a user connects to the server after logout
is also recommended. Designers and developers should also ensure not to expose
session IDs in URLs, as attackers could exploit these for session theft techniques.

ENFORCE THE LAW OF LEAST PRIVILEGE

Denying access by default for all public resources is one of the first steps to cont-
rolling misuse of access privileges. This implies that each user should be granted
permissions required to complete a particular function and no more. The law of
least privilege implements a zero-trust approach to information exchange that
ensures subjects don‘t have privileges beyond what is necessary.

BEST PRACTICES IN PREVENTING BROKEN
ACCESS CONTROL

Some recommended practices to ensure effective access control include:

WRITING APPLICATION CODE AND BUSINESS
LOGIC WITH AUTHORIZATION CONTROLS IN MIND

Software developers and business designers must ensure their program and busi-
ness logic includes rules that define access to resources and functionalities at the
code level. Once the system has authenticated a subject, their privileges to objects
should be limited by their roles and identity.

USE CENTRALIZED AUTHORIZATION ROUTINES

Administering access control policies and routines in a centralized location is a
recommended approach that helps expedite the application of vulnerability fixes
as soon as those are identified. Centralization also eliminates the manual effort
required to apply access control policies to every page containing sensitive files
and information.

www.crashtest-security.com | 8

PERFORM SERVER-SIDE CONTROLS

User authentication, input validation, and request processing should be performed
at the server-side, as this simplifies the remote management of access control
routines. Server-side access control mechanisms also eliminate reliance on tradi-
tional keys to enforce privilege decisions, making tracking all access attempts and
activities easy.

DETECTING BROKEN ACCESS CONTROL VUL-
NERABILITIES WITHIN WEB APPS AND APIS
WITH CRASHTEST SECURITY

Crashtest Security Suite‘s vulnerability scanners help establish a continuous,
automated security testing process that allows teams to uncover access control
flaws with extremely low false positives. The security suite integrates with almost
all popular software stacks and security platforms, helping to initiate penetration
testing within minutes.

Try Crashtest Security for a free, 14-day demo to understand how the security suite
can help eliminate access control blind spots while saving time and budget on
blackbox pentesting.

Start 2-Week Trial for Free

TEST AND AUDIT ACCESS CONTROLS FREQUENTLY

Apart from manually testing control mechanisms, it is also recommended to adopt
automated scanning tools for continuous monitoring of access control flaws that
misalign with an organization‘s security policy. While continuous testing and vul-
nerability scanning help teams evaluate whether access control mechanisms are
working as intended, such tools also help uncover emerging vulnerabilities within
access control systems.

www.crashtest-security.com | 9

https://crashtest.cloud/registration?_ga=2.19885692.574898369.1648031630-212080000.1648031630

WWW.CRASHTEST-SECURITY.COM

