
VERACODE STATE OF SOFTWARE SECURITY 2023 B

S E C T I O N  T H R E EW H E R E  W E  A R E

State of Software Security 2023

How to Reduce Security Debt and Avoid Introducing Security 
Flaws That Accumulate Over the Life of Your Applications

An Ounce of Prevention is Worth a Pound of Cure:

Annual Report 
on the State of 
Application Security



VERACODE STATE OF SOFTWARE SECURITY 2023C

S E C T I O N  T H R E E W H E R E  W E  A R E

Veracode is a leading AppSec partner for 
creating secure software, reducing the risk 
of security breach, and increasing security 
and development teams’ productivity. 
As a result, companies using Veracode 
can move their business, and the world, 
forward. With its combination of process 
automation, integrations, speed, and 
responsiveness, Veracode helps companies 
get accurate and reliable results to focus 
their efforts on fixing, not just finding, 
potential vulnerabilities. 

Learn more at www.veracode.com,  
on the Veracode blog and on Twitter.

https://veracode.com/
https://www.veracode.com/blog
https://twitter.com/Veracode


Co
nt

en
ts Section One	 02 	 At a Glance

Section Two	 06 	 Introduction

Section Three	 08 	 Where We Are

	 09 	 Studying Applications

	 11	 Discovering Flaws

	 14	� Flaw Types, Rate of Introduction, and the  
Uniqueness of Flaws by Languages

	 16 	 Top Flaws by Languages

	 27 	 Summary of Java, .NET, and JavaScript

Section Four	 28	 How We Got Here

	 29	 Application Size

	 30	 The Evolution of Applications and Their Flaws

Section Five	 37	 Modeling Factors That Influence Flaw Introduction

Section Six	 43	 Fragility of Open Source	

	 48	 Is there an impact of Open Source on quality?

	 52	 Recommendations for Open Source

Section Seven	� 53	� An Ounce of Prevention is Worth a Pound of Cure: 
Concrete Steps to Improve Your Application  
Security Program for 2023 and Beyond

	 54	 Step 1: Steepen the Curve

	 55	 Step 2: Prioritize Automation and Developer Training

	 56	 Step 3: Establish Application Lifecycle

Section Eight	 59	 Appendix	

	 60	 Methodology and A Note on Mass Closures

VERACODE STATE OF SOFTWARE SECURITY 2023 01



S E C T I O N  O N E AT A G L A N C E

VERACODE STATE OF SOFTWARE SECURITY 202302

Flaw Prevalence
Over 74% of applications have 
at least one security flaw found 
in the last scan over the last  
12 months. 

These include over 69% have at 
least one OWASP Top 10 flaw, 
and over 56% have at least one  
CWE Top 25 flaw.

69.7%

56.9%

High Severity

CWE Top 25

OWASP Top 10

Percent of Applica�ons (Over Last 12 Months)

19.2%

Any Flaws 74.1%

In the latest edition of the State of Software Security, we use 
hard data to establish what factors go into flaw introduction, 
faster remediation, and lower security debt. We also turn 
conventional wisdom on its head in our look at fragility and 
the health of the open-source ecosystem. Finally, we provide 
concrete steps you can take now to improve your application 
security program for 2023 and beyond, because an ounce  
of prevention is worth a pound of cure.

The State of  
Software Security  
at a Glance 

Section One

Java

77.7%
82.2%

55.8%

75.6%
74.5%

54.4%

60.1%

49.0%
58.8%

19.9%
21.9%

9.5%
High Severity

CWE Top 25

OWASP Top 10

Any Flaws

Percent of Applica�ons .NET JavaScript

Flaw Prevalence 
by Language
JavaScript generally has 
fewer flaws with just over 
half of applications with any 
flaws reported, while about 
four out of five Java and 
.NET applications have  
any flaws.



S E C T I O N  O N EAT A G L A N C E

VERACODE STATE OF SOFTWARE SECURITY 2023 03

Application 
Size by Age of 
Applications
Applications grow in size 
by about 40% year on 
year irrespective of their 
original size.

16kB

64kB

256kB

1MB

4MB

16MB

10 2 3 4 5

Age of Applica�on (Years)

A
pp

lic
a�

on
 S

iz
e

10% of applica�ons are larger

Median Applica�on Size

10% of applica�ons are smaller

Age of 
Application

The number of years on  
the Veracode Platform

Flaw Introduction by Age of Applications
While over 30% of applications show flaws at the first scan, this number drops to approximately 
22% shortly after before rising to 30% again at four years. The number of applications with new 
flaws then increases further to approximately 35% of applications over four and a half years old.

The “honeymoon phase” of applica�ons
where fewer flaws are introduced

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5

Age of Applica�on (Years)

Pe
rc

en
t o

f A
pp

lic
a�

on
s w

ith
 N

ew
 F

la
w

s

First scan may discover 
some accumulated flaws

Propor�on of applica�ons 
introducing new flaws 
grows over �me



S E C T I O N  O N E AT A G L A N C E

VERACODE STATE OF SOFTWARE SECURITY 202304

Top Flaws by Scan Type
The top flaws vary markedly by scan type. While this is not news, it does 
highlight the importance of using a variety of scan types to ensure finding 
hard-to-identify flaws that may only be detectable by one type of scan.

Directory
Traversal

Command or
Argument Injec�on

Creden�als
Management

Code Quality

SQL Injec�on

Code Injec�on

Cross-Site
Scrip�ng (XSS)

Session
Fixa�on

Deployment
Configura�on

Authen�ca�on
Issues

Encapsula�on

Cryptographic
Issues

Informa�on
Leakage

Insecure
Dependencies

Server
Configura�on

1.8%

1.9%

6.3%

6.9%

7.7%

9.1%

10.2%

11.0%

40.4%

53.5%

57.5%

58.1%

71.4%

75.1%

96.5%

Percent of Applica�ons

API Abuse

Server
Configura�on

Command or
Argument Injec�on

Time and State

Authen�ca�on
Issues

Encapsula�on

SQL Injec�on

Cross-Site
Scrip�ng (XSS)

Insufficient
Input Valida�on

Directory
Traversal

Creden�als
Management

Code Quality

Informa�on
Leakage

Cryptographic
Issues

CRLF Injec�on

Sta�c Analysis

10.0%

11.1%

11.3%

14.0%

19.2%

19.9%

22.5%

38.5%

41.6%

41.7%

46.7%

55.6%

59.3%

59.8%

64.8%

24.3%

32.0%

32.1%

32.4%

32.5%

36.3%

42.8%

44.7%

48.1%

50.6%

52.5%

56.7%

60.4%

62.8%

Authen�ca�on
Issues

Race Condi�ons

SQL Injec�on

Command or
Argument Injec�on

Numeric Errors

Deployment
Configura�on

Authen�ca�on
Issues

Cross-Site
Scrip�ng (XSS)

Cryptographic
Issues

Buffer Management
Errors

Directory
Traversal

Code Injec�on

Encapsula�on

Insufficient
Input Valida�on

Informa�on
Leakage

SCA AnalysisDynamic Analysis

66.6%



S E C T I O N  O N EAT A G L A N C E

VERACODE STATE OF SOFTWARE SECURITY 2023 05

Reduction in the probability  
that new flaws will be 
introduced into applications.* 

Increase in the probability  
that new flaws will be 
introduced into applications.* 

Reduction in the number of 
flaws introduced when flaws are 
introduced into the application.

Increase in the number of 
flaws introduced when flaws are 
introduced into the application.

0.4

1.6 5.1

1.3
Scans Last 
Month

Every Month 
Since Last Scan 

Factors That Impact Introduction and Accumulation of Flaws

Scan Frequency

Reduction in the probability  
that new flaws will be 
introduced into applications.* 

Reduction in the number of 
flaws introduced when flaws are 
introduced into the application.

*From a base of 27% in any given month.

2.0

17.9

Scanning 
Via API

Scan Type

Reduction in the probability  
that new flaws will be 
introduced into applications.* 

Reduction in the number of 
flaws introduced when flaws are 
introduced into the application.

1.8

12.1

Completion of 
10 Security Labs 
Trainings

Developer Education



S E C T I O N  T W O I N T R O D U C T I O N

VERACODE STATE OF SOFTWARE SECURITY 202306

Introduction

Section Two

Welcome to another installment of the State of Software Security. 
We are teamed up with the superstar data analysis team at Cyentia 
once again. We have some great research in store for you this year. 
We wanted to iterate on some of our previous work and talk about 
some of the things you can do to make your program better.

VERACODE STATE OF SOFTWARE SECURITY 202306



S E C T I O N  T W OI N T R O D U C T I O N

VERACODE STATE OF SOFTWARE SECURITY 2023 07

To start with, we are focusing this year on things that  
influence flaw introduction and what it means for an  
application’s lifecycle when flaws are introduced. 

Flaw

A flaw is an 
implementation 
defect that can lead 
to a vulnerability, and 
a vulnerability is an 
exploitable condition 
within your code that 
allows an attacker  
to attack.

Now that we had analyzed some of the 
factors that define the profile of flaw 
introduction and remediation over time, 
we saw patterns emerge. What can be 
done to improve that picture? To reduce 
the chances that a flaw is introduced  
in the first place and then the number  
of flaws when they are introduced?  
We devote an entire section to showing 
the significant insights we found.

We looked at fragility and the health  
of the open-source ecosystem this year.  
We think that what came out of our 
analysis somewhat turns conventional  
wisdom on its head. It did not start 
that way, but the research raises more 
questions than it answers. We are ready 
to show what we found and challenge 
some accepted principles.

To do that, we wanted to drill down a  
little bit and break things out by the top  
three languages used by developers. We’ve 
seen similar flaw profile differences among 
languages in the past, but we want to be 
clear up front: Rather than trying to knock 
one language, we want to establish what 
factors go into flaw introduction, faster 
remediation, and lower security debt 
regardless of the language to set a pattern 
that any application written in any language 
can follow to achieve similar results.

The lifecycle of an application and the 
pattern of flaw introduction turns out to  
be more predictable than one may think. 
Once we understood how an application’s 
security posture (flaws, growth rate, etc.) 
progresses through its production lifecycle, 
we were able to establish what appear  
to be fairly distinct phases. We wanted  
to look at what could be done to improve, 
so we dug in to find out.

Read all the way to the end and we’ll reward you by taking 
what we have learned and making some suggestions for us all 
to put into action. The whole report describes a path to our 
recommendations and should give everyone plenty to think 
about. An ounce of prevention is indeed worth a pound of cure. 

We hope you’ll enjoy the journey. 

https://www.veracode.com/blog/managing-appsec/flaws-and-vulnerabilities-and-exploits-oh-my


VERACODE STATE OF SOFTWARE SECURITY 202308

S E C T I O N  T H R E E W H E R E  W E  A R E

VERACODE STATE OF SOFTWARE SECURITY 202308

Effective cloud security means that the inherent 
exposure (potential for reachability) for cloud-native 
apps must be addressed in layers. Aside from technical 
access controls it means that secure coding practices 
are all the more crucial.  

Where 
We Are

09	 Studying Applications

11	 Discovering Flaws

14	 Flaw Types, Rate of Introduction, and the Uniqueness of Flaws by Languages

16	 Top Flaws by Languages

27	 Summary of Java, .NET, and JavaScript

Section Three



VERACODE STATE OF SOFTWARE SECURITY 2023 09

S E C T I O N  T H R E EW H E R E  W E  A R E

Studying Applications
We begin with a look back in time. The growth shown in Figure 1 is the cumulative 
number of applications that Veracode customers have created, which continues 
to grow unabated. Based on the well-distributed demographics of our customer 
data we can infer that many other organizations are currently experiencing similar 
growth. While the number does skew upwards via the increased adoption of 
microservices as an architectural design choice, it’s pretty clear from the growth 
rate that application count is on the rise. 

Figure 1: Cumulative Applications Created by Veracode Customers

0%

20%

40%

60%

80%

100%

2012 2014 2016 20202018 2022

Applica�on Created

N
ew

 A
pp

lic
a�

on
s (

Cu
m

ul
a�

ve
)

50% of applica�ons were 
onboarded in the last 2 years

72% of applica�ons were 
onboarded in the last year

S E C T I O N  T H R E EW H E R E  W E  A R E



VERACODE STATE OF SOFTWARE SECURITY 202310

S E C T I O N  T H R E E W H E R E  W E  A R E

Java .NET JavaScript

44.2% 26.4% 14.3%
Other

15.1%

Python
3.5%

C++
2.2%

PHP
2.0%

Android
1.8%

SCALA
1.2%

iOS Bitcode
0.7%

COBOL
0.7%

iOS
0.6%

GOLANG
0.5%

Other
2.0%

Figure 2: Languages in Use by Proportion of Applications 

By Languages
The distribution shown in Figure 2 is weighted more heavily towards those 
languages that organizations (not individuals) use to deliver their applications. 
While we have seen other languages growing quickly in popularity, Java, .NET,  
and JavaScript take spots one, two, and three respectively as the most used  
in this research. That is not just some random thing we want to show. 

We found distinct trends that indicate that the choice  
of programming language has an effect on the: 

1   Types of flaws introduced

2   Ecosystem of libraries and third-party software

1 �SoSS 11 Open Source Edition info.veracode.com/fy22-state-of-software-security-v11-open-source-edition.html

We’ve shown in the past, for example, that over 90% of Java applications are 
third-party code,1 while most other languages include more homegrown code. 
A look at a breakdown by language shows how different they can be when just 
scanning with static application security testing (SAST). We continue to see that 
some languages are simply more or less prone to some flaws over others, which 
we’ll get into later on.

Over 90% of Java applications 
are third-party code.1

90

A look back at SoSS v11 

https://info.veracode.com/fy22-state-of-software-security-v11-open-source-edition.html
https://securityflawheatmap.veracode.com/p/1


VERACODE STATE OF SOFTWARE SECURITY 2023 11

S E C T I O N  T H R E EW H E R E  W E  A R E

0%

25%

50%

75%

100%

2016 2018 2020

Pe
rc

en
t o

f A
pp

lic
a�

on
s (

Ro
lli

ng
 2

 M
on

th
 W

in
do

w
)

2022

Any Flaws

OWASP Top 10
CWE Top 25

High Severity

Discovering Flaws Figure 3: Existing Flaws 
in Applications

For a quick “at a glance” look at the general state of software  
security, we first examine a point in time snapshot, focusing  
on those applications scanned within the last 12 months.

We see in Figure 3 that, over the past 12 months, about three  
out of four applications have at least one flaw in the last scan result.  
In this figure “high severity” is defined as high or critical severity flaws. 
Slightly fewer than one in five applications have reported such flaws  
in their last scan. 

Figure 4 shows the fluctuation over time, looking at a sliding time 
window. While Figure 3 looked at all of the applications over a single 
12-month window, Figure 4 slides a rolling two-month window, 
counting up the proportion of applications that had at least one 
flaw in each flaw category. This rolling view smooths out short-term 
irregularities in the data, showing us the evolution of flaw findings,  
as opposed to the previous snapshot bar chart. Generally, we can  
see that things are improving. Every measurement trends downwards 
over the last six years. 

Figure 4: Existing Flaws in Applications Over Time

74.1%
69.7%

56.9%

High
Severity

CWE
Top 25

OWASP
Top 10

Any
Flaws

Pe
rc

en
t o

f A
pp

lic
a�

on
s (

O
ve

r L
as

t 1
2 

M
on

th
s)

19.2%

The jump in OWASP (Open Web 
Application Security Project) at the 
end of 2021 represents the shift to 
the new OWASP Top 10.



VERACODE STATE OF SOFTWARE SECURITY 202312

S E C T I O N  T H R E E W H E R E  W E  A R E

Beginning to Break It Out by Language

Java

77.7%

82.2%

55.8%

75.6%

74.5%

54.4%

60.1%

49.0%

58.8%

19.9%

21.9%

9.5%

High Severity

CWE Top 25

OWASP Top 10

Any Flaws

Percent of Applica�ons .NET JavaScript

We’ve looked at the top flaw category by language 
in the past, so this time we wanted to take it a step 
further. Rather than merely noting the top flaws  
by language, we wanted to find out whether there 
were variations over the lifetime of an application  
in production. Perhaps more importantly, what steps 
can be taken to reduce the introduction of flaws 
in the first place? Being informed and then vigilant 
should enable that. Ideally the data will help us get 
a better handle on flaw introduction, security debt 
accumulation, and application lifecycle management. 

The first thing that jumped out during analysis was 
that there were different inherent security postures 
for the “Top Three Languages.” There is also a  
different rate at which flaws were fixed, leaving  
a higher (or lower) de facto chance that flaws will  
simply accumulate over time. 

Accumulation of flaws can be referred to as security 
debt and is a subset of technology debt. This is defined 
as the number of net flaws remaining when considering 
flaw introduction and remediation rates. Different 
languages pay down at different rates than they build 
up and that makes a positive or negative difference  
in accumulation over time. We’ll examine this in the 
next section, as we break out the top three languages 
in this research. First have a look at the “any flaws  
by language” view in Figure 5 below. While Java and 
.NET appear similar, JavaScript is different enough  
to warrant further examination. What we discovered 
were differences that were not visible at the top level. 
That’s why we went down this rabbit hole, and it’s 
where you are going next.

JavaScript generally has fewer flaws with just over half 
of applications with any flaws reported, while almost five 
out of every six .NET applications have reported flaws.

Figure 5: Existing Flaws in Applications 
by Language



VERACODE STATE OF SOFTWARE SECURITY 2023 13

S E C T I O N  T H R E EW H E R E  W E  A R E

Collecting Flaws

Paying down technical or security debt could be likened to bailing 
a sinking boat at different rates depending on multiple factors both 
technical and organizational. Whatever strategy an organization has 
to deal with it, flaws generally collect over time until the boat fills 
faster than one can bail. 

Developers can compare 
how their languages perform 
and get a view of areas for 
future focus.

Remember different 
languages have inherently 
different security postures, 
environments, and controls.  

Depending on your role, you may get 
different things out of the data we 
will be presenting. A developer might 
be interested to find out the most 
common flaws introduced and, once 
those are identified, take conscious 
steps to learn how to avoid them.  
A person responsible for security 
might be interested to see the rate 
of flaw accumulation and what that 
means to the overall risk posture. 

Finally, application stakeholders 
may wish to think about application 
lifecycle management and rethink the 
benefits of planned obsolescence or 
additional investment in maintenance. 
We know application rewrites are 
expensive and the idea of planned 
obsolescence sounds radical but bear 
with us and keep an open mind.



VERACODE STATE OF SOFTWARE SECURITY 202314

S E C T I O N  T H R E E W H E R E  W E  A R E

In its defense, Figure 6 does give a nice 
overview of where broad challenges exist, 
and it does highlight that if you only focus 
on a single type of scanning you may be 
missing some hard-to-identify flaws that 
may only be detectable through another 
type of scan. 

Flaw Types, Rate  
of Introduction,  
and the Uniqueness  
of Flaws by  
Languages

Overall View
What security challenges are developers in each language 
facing? Our first view is the overall types of flaws by scan 
type and how prevalent they are. As we explored the 
results this year, we felt that this plot (Figure 6) can be 
challenging to interpret, and that’s where things became 
heated in our behind-the-scenes discussions. For example, 
you may look at Figure 6 and take away a message that all 
developers should learn more about Carriage Return Line 
Feed (CRLF) Injection flaws, but those disproportionately 
affect Java applications.  

While .NET and JavaScript applications still have those 
flaws present, they generally do not take the top slot  
of where those developers should focus their attention. 
Plus, breaking out only by scan type tells us more about 
what types of flaws the scan types may find and less 
about where developers focus. To see what we mean 
there, take a look at Figure 6 and observe that static, 
dynamic, and composition analysis find completely 
different flaws in their top five. 

Regardless of what any of us may think of Figure 6, 
we thought it was clear that this year we should focus 
more on the challenges developers are facing in the 
individual languages. 



VERACODE STATE OF SOFTWARE SECURITY 2023 15

S E C T I O N  T H R E EW H E R E  W E  A R E

Figure 6: Top Flaw Types by Scan Type

Directory
Traversal

Command or
Argument Injec�on

Creden�als
Management

Code Quality

SQL Injec�on

Code Injec�on

Cross-Site
Scrip�ng (XSS)

Session
Fixa�on

Deployment
Configura�on

Authen�ca�on
Issues

Encapsula�on

Cryptographic
Issues

Informa�on
Leakage

Insecure
Dependencies

Server
Configura�on

1.8%

1.9%

6.3%

6.9%

7.7%

9.1%

10.2%

11.0%

40.4%

53.5%

57.5%

58.1%

71.4%

75.1%

96.5%

Percent of Applica�ons

API Abuse

Server
Configura�on

Command or
Argument Injec�on

Time and State

Authen�ca�on
Issues

Encapsula�on

SQL Injec�on

Cross-Site
Scrip�ng (XSS)

Insufficient
Input Valida�on

Directory
Traversal

Creden�als
Management

Code Quality

Informa�on
Leakage

Cryptographic
Issues

CRLF Injec�on

Sta�c Analysis

10.0%

11.1%

11.3%

14.0%

19.2%

19.9%

22.5%

38.5%

41.6%

41.7%

46.7%

55.6%

59.3%

59.8%

64.8%

24.3%

32.0%

32.1%

32.4%

32.5%

36.3%

42.8%

44.7%

48.1%

50.6%

52.5%

56.7%

60.4%

62.8%

Authen�ca�on
Issues

Race Condi�ons

SQL Injec�on

Command or
Argument Injec�on

Numeric Errors

Deployment
Configura�on

Authen�ca�on
Issues

Cross-Site
Scrip�ng (XSS)

Cryptographic
Issues

Buffer Management
Errors

Directory
Traversal

Code Injec�on

Encapsula�on

Insufficient
Input Valida�on

Informa�on
Leakage

SCA AnalysisDynamic Analysis

66.6%



VERACODE STATE OF SOFTWARE SECURITY 202316

S E C T I O N  T H R E E W H E R E  W E  A R E

Top Flaws  
by Language

Keep in Mind

We want to be crystal clear that when we are talking 
about your preferred programming language, we are not 
calling out specific languages or programmers. Whether 
we admit it or not, flaws happen, and they happen in any 
and every programming language. 

These flaws, however, are not evenly distributed. The way 
different languages are architected and implemented can 
make some security mistakes easier (or harder) to make 
and that’s what we want to highlight to make us all better.

The choice of programming language has an effect 
on the types of flaws that are most commonly 
introduced, and it affects the ecosystem of libraries 
and third-party software. Slowing down and taking  
a look at this reality is useful for those individuals  
or organizations that wish to prioritize their training 
to know what the most common flaws are, and how 
they might be introduced. This basic awareness can 
influence code as it is being written — the best time 
to avoid introducing a flaw that could hang around 
throughout the lifecycle of an application.

Developer awareness of what the 
most common flaws are, and how 
they are introduced, can increase 
diligence and reduce the probability 
of introducing them at all.



VERACODE STATE OF SOFTWARE SECURITY 2023 17

S E C T I O N  T H R E EW H E R E  W E  A R E

Remediation Timeline
In SoSS v12 we looked at flaw remediation rate  
by scan type, but this year we wanted to discover 
differences by language. The best way to look at  
time-to-event is with a set of techniques collectively 
referred to as “survival analysis.”2 This type of analysis 
accounts for both the closed flaws and those still  
open (not yet closed). It provides a much more  
realistic picture around remediation timelines. 

The curves in Figure 7 look at the probability that  
a finding is still open as a function of the time since 
the flaw was first discovered. A few things jump out 
immediately. Our top three languages reach the  
halfway mark (expected time it takes to remediate  
half of the open flaws) at different times. At first  
glance, the lines appear to be descending together 
closely, but they definitely aren’t. 

With Java we see the probability that a flaw is still open 
after three months at 65.3%. That is not just a “so what?” 
moment. Given the corresponding remediation rate,  
over a two-year timeline these applications only get  
just slightly below 27%. The lower remediation rate  
for Java quickly compounds over time. 

In the language-specific section below you’ll see why 
this matters when we combine factors such as time, flaw 
introduction rate, density, and others. You’ll also see why 
these things become a differentiator when compared 
to JavaScript in a straight-up flaw survival competition. 
Remember where the JavaScript line is for the next 
couple of sections as we seemingly quibble over what 
appears to be minor percentage differences. To call it  
out clearly, only 14% of flaws in apps written in 
JavaScript are still open after two years.

2 �For a full discussion on what flaw survival analysis is, Cyentia wrote this  
blog post to discuss the topic after our 9th SoSS report. Vintage cool.  
www.cyentia.com/survival-in-application-security

Figure 7: Time to Remediation by Language

0%

25%

50%

75%

100%

6 months 1.5 years

Age of Flaw

Pr
ob

ab
ili

ty
 F

la
w

 is
 S


l
l O

pe
n

1 year

Propor
on of flaws s
ll 
open a�er three months

Other: 67.3%
Java: 65.3%
.NET: 59.2%
JavaScript: 54.1%

Expected 
me to remediate
half of the open flaws

Other: 272 days
Java: 243 days
.NET: 158 days

JavaScript: 116 days

OtherJava
.NET

JavaScript

www.cyentia.com/survival-in-application-security


VERACODE STATE OF SOFTWARE SECURITY 202318

S E C T I O N  T H R E E W H E R E  W E  A R E

Java
To begin with, let’s look at Java applications versus other languages with a 
straightforward bar chart (Figure 8). In every category Java underperforms 
the pack. If you look at the percent of apps reducing tech debt this means 
that the line of 50% divides a net upward or downward trend. You can 
turn the number around to see that about 56% of Java Applications are 
increasing rather than reducing their security debt. 

Another benchmark number is the first three-month mark. Flaws  
not remediated by that time frame are likely to be carried forward into 
eternity. The three-month mark is a good target, but lagging at that mark 
is bad. Referring back to the remediation curve, if an application’s line is 
not rapidly declining early, then remediation efforts seem to flatten out. 
Looking down to our bar chart, it takes 243 days to close out 50% of  
flaws compared to .NET and JavaScript, which accomplish this goal  
months sooner. 

Finally we look at the overall percentage of flaws fixed, which  
at 44% is again lower than .NET or JavaScript. 

Java is by far the most 
common application 
language scanned by 
Veracode — accounting 
for 44.2% of scans. 

Java
.NET 50.7% of apps

44.4% of apps

JavaScript 52.6% of apps

Other 48.1% of apps

Java
.NET 158 days

243 days

JavaScript 116 days

Other 272 days

Time to close
half of the flaws

JavaScript 45.9% of flaws

Java
.NET 40.8% of flaws

34.7% of flaws

Other 32.7% of flaws

Flaws closed in
first three months

Percent of apps
reducing tech debt

Figure 8: Various Metrics Across Languages (Java Emphasis)

44.2



VERACODE STATE OF SOFTWARE SECURITY 2023 19

S E C T I O N  T H R E EW H E R E  W E  A R E

Figure 9: Introduction of Flaws vs Still Open (Java)

90%0% 10% 20% 30% 40% 50% 60% 70% 80%

Percent of Applica�ons Introducing Flaw Types

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Pe
rc

en
t o

f A
pp

lic
a�

on
s w

ith
 F

la
w

 T
yp

es
 S

�l
l O

pe
n

SAST DAST

API Abuse
Authen�ca�on Issues

Authoriza�on Issues

Code Quality

Creden�als Management

CRLF Injec�on

Cross-Site Scrip�ng (XSS)

Cryptographic Issues

Directory Traversal

Encapsula�on

Informa�on Leakage

Insufficient Input Valida�on

Server Configura�on

SQL Injec�on
Time and State

Authen�ca�on Issues

Cryptographic Issues

Deployment Configura�on

Encapsula�on
Informa�on Leakage

Insecure Dependencies

3 �CWEs are numbered individual flaws that are classified into CWE Categories.

The next plot (Figure 9) looks at the introduction  
of flaws by Common Weakness Enumeration (CWE) 
category3 over the last 12 months, comparing the 
percent of applications that have introduced one or 
more flaw types to the percent of applications that 
have that flaw type still open.

Figure 9 shows the percentage of apps introducing 
flaws (horizontal axis) and then the chances of that 
flaw still being around (vertical axis), by type of flaw. 

This figure should provide a consolidated perspective  
in terms of guiding a training program, since it rolls  
up multiple CWEs by category. For example, 77%  
of Java applications have introduced at least one  
CRLF injection flaw in the last 12 months (horizontal  
axis in Figure 9) and 60% of Java applications had  
at least one CRLF Injection flaw present in their  
last scan (vertical axis in Figure 9). 

Note: This is not 
filtered by severity.

https://cwe.mitre.org/


VERACODE STATE OF SOFTWARE SECURITY 202320

S E C T I O N  T H R E E W H E R E  W E  A R E

Remember the bar chart view at the beginning of  
this section (Figure 6) that we said was challenging to 
interpret? Not Figure 10. It is language specific. We put 
this together by combining the highest proportion of all 
flaws across static and dynamic scans. Since we touch 
on open source later in this research, we are ignoring 
the scan types beyond those.

Figure 10: Percent of Applications with New Flaws with a CWE in Past Year (Java)

To continue down our language-specific rabbit hole  
and see where it leads, let’s look at all of the applications 
that introduced flaws in the last 12 months (Figure 10). 
88% of the applications that introduced a flaw in the  
last year introduced at least one CWE-829 weakness 
(CWE-829 Inclusion of Functionality from Untrusted 
Control Sphere). As you look top to bottom at the list 
in Figure 10 you can see an additional dimension for 
training prioritization, but any program must also consider 
severity of the flaws and how they might get introduced. 

38.4%

38.8%

41.1%

41.7%

44.0%

53.9%

57.6%

70.6%

72.7%

74.7%

75.8%

88.3%

CWE-402
Transmission of Private Resources

into a New Sphere (‘Resource Leak’)

CWE-327
Use of a Broken or Risky
Cryptographic Algorithm

CWE-614
Sensi�ve Cookie in HTTPS

Session Without ‘Secure’ A­ribute

CWE-526
Exposure of Sensi�ve Informa�on
Through Environmental Variables

CWE-259
Use of Hard-Coded Password

CWE-404
Improper Resource Shutdown or Release

CWE-693
Protec�on Mechanism Failure

CWE-352
Cross-Site Request Forgery (CSRF)

CWE-757
Selec�on of Less-Secure Algorithm During

Nego�a�on (‘Algorithm Downgrade’)

CWE-117
Improper Output Neutraliza�on for Logs

CWE-16
Configura�on

CWE-829
Inclusion of Func�onality from

Untrusted Control Sphere

Weaknesses Introduced by Percent of Applica�ons with Flaws

Keep in Mind Figures 10, 13, and 16 show the 
highest proportion across static 
and dynamic scans.



VERACODE STATE OF SOFTWARE SECURITY 2023 21

S E C T I O N  T H R E EW H E R E  W E  A R E

.NET
We turn our attention to .NET and see a slightly different picture as 
compared to the other languages. 51% of .NET applications are reducing 
tech debt, which means application developer teams seem to be getting 
slightly more than half the flaws — faster than other languages in this data 
(with the oft-recurring exception of JavaScript). 

When you look at these bars in Figure 11, what at first you might have 
thought is only a slightly more aggressive remediation percentage rate 
translates into differences in the remediation curve that you can begin to 
count in your head. You can see this in the time to close half the flaws as 
.NET pulls away from Java by close to 100 days. That’s encouraging news  
for .NET, and a peek at the remediation curve (way back up in Figure 7) 
shows that at the two-year mark about one in five flaws are still open in  
.NET. Java comes in at just over one in four. Then with the remediation curve 
in mind, if you compare Figure 12 versus Figure 9 it is clear that a slightly 
more aggressive remediation percentage translates into reduced chances  
that something is still open. Overall it is a second place sweep for .NET.

The Problem 

The problem here can be the 
severity of flaws that are introduced 
and the time it takes to fix them.  
As mentioned previously in the  
Java section, each language seems 
to have its own predisposition to  
high- and critical-severity flaws  
that then wind up appearing in  
large numbers.

Figure 11: Various Metrics Across Languages (.NET)

.NET 158 days
Java 243 days

JavaScript 116 days

Other 272 days

.NET 40.8% of flaws
Java 34.7% of flaws

JavaScript 45.9% of flaws

Other 32.7% of flaws

.NET 50.7% of apps
Java 44.4% of apps

JavaScript 52.6% of apps
Other 48.1% of apps

Time to close
half of the flaws

Flaws closed in
first three months

Percent of apps
reducing tech debt



VERACODE STATE OF SOFTWARE SECURITY 202322

S E C T I O N  T H R E E W H E R E  W E  A R E

At the CWE category level, just looking at the last 12 months, we compared the 
percentage of applications that have introduced one or more flaw types to the 
percentage of applications that have introduced flaws and that have a flaw type still 
open. There is not a severity limit; we were just looking at types of flaws in Figure 12. 
For comparison between other languages, pick a flaw type you are concerned about 
and see where it may fall among languages. The location and density are very different 
among the three. The best grouping or location is down and to the left, and any 
progression from that lower left anchor point of zero is progressively worse.

Figure 12: Introduction of Flaws vs Still Open (.NET)

Authen�ca�on Issues

Code Quality

Creden�als Management
CRLF Injec�on

Cross-Site Scrip�ng (XSS)

Cryptographic Issues

Directory Traversal

Informa�on Leakage

Insufficient Input Valida�on

SQL Injec�on

Untrusted Ini�aliza�on

Authen�ca�on Issues

Cryptographic Issues

Deployment Configura�on

Encapsula�on

Informa�on Leakage

Session Fixa�on

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Pe
rc

en
t o

f A
pp

lic
a�

on
s w

ith
 F

la
w

 T
yp

es
 S

�l
l O

pe
n

90%0% 10% 20% 30% 40% 50% 60% 70% 80%

Percent of Applica�ons Introducing Flaw Types SAST DAST



VERACODE STATE OF SOFTWARE SECURITY 2023 23

S E C T I O N  T H R E EW H E R E  W E  A R E

Figure 13: Percent of Applications with New Flaws with a CWE in Past Year (.NET)

39.4%

40.2%

40.9%

41.3%

50.5%

52.0%

54.8%

61.5%

67.4%

69.6%

80.3%

90.3%

CWE-73
External Control of File Name or Path

CWE-614
Sensi�ve Cookie in HTTPS Session

Without ‘Secure’ A�ribute

CWE-117
Improper Output Neutraliza�on for Logs

CWE-1174
ASP.NET Misconfigura�on:
Improper Model Valida�on

CWE-693
Protec�on Mechanism Failure

CWE-352
Cross-Site Request Forgery (CSRF)

CWE-201
Inser�on of Sensi�ve

Informa�on Into Sent Data

CWE-404
Improper Resource Shutdown or Release

CWE-526
Exposure of Sensi�ve Informa�on
Through Environmental Variables

CWE-16
Configura�on

CWE-757
Selec�on of Less-Secure Algorithm During

Nego�a�on (‘Algorithm Downgrade’)

CWE-829
Inclusion of Func�onality from

Untrusted Control Sphere

Weaknesses Introduced by Percent of Applica�ons with Flaws

Figure 13 shows the percentages of flaws, and we take a slightly deeper view  
by CWE, rather than the CWE category of flaw seen in Figure 12. We were 
looking for prevalence of occurrence while focusing on all flaws. To compare 
Figure 12 to Figure 13, you can see in .NET as with Java when certain CWE 
categories and CWEs are introduced, they generally are introduced a lot, have  
a higher percentage of being introduced, and, according to Figure 12 for .NET, a 
fair percentage of them (based on those up and to the right) seem to hang around 
for at least 12 months. Interestingly enough, .NET and Java (JavaScript had one) 
turned up some similar groupings between static and dynamic scans. However,  
we still can see that top to bottom there are flaw categories that are found in  
one or the other. That is the advantage of using static and dynamic together. 

Note: Figure 13 is a 
12-month, CWE-specific, 
view into the percentage 
chance of any flaw being 
introduced in the event 
that flaws were introduced.



VERACODE STATE OF SOFTWARE SECURITY 202324

S E C T I O N  T H R E E W H E R E  W E  A R E

JavaScript

Figure 14: Various Metrics Across Languages (JavaScript)

.NET 158 days

Java 243 days

JavaScript 116 days
Other 272 days

.NET 40.8% of flaws

Java 34.7% of flaws

JavaScript 45.9% of flaws
Other 32.7% of flaws

.NET 50.7% of apps

Java 44.4% of apps

JavaScript 52.6% of apps
Other 48.1% of apps

Time to close
half of the flaws

Flaws closed in
first three months

Percent of apps
reducing tech debt

JavaScript is the stand-out in our analysis when it comes to every single category we 
looked at (see Figure 14), and this is the story of small percentages at the start making  
a big difference towards the bottom line. If we start with a quick glance at Figure 14,  
we can see that applications in our dataset written in JavaScript perform best of the 
three. If we look back at the remediation curve (Figure 7) and our seemingly non 
sequitur comment about “getting to 14%” still open at the end of two years, the next 
few sentences describe the required type of performance metrics or profile (Figure 14). 

It requires:

1   �That an application is reducing rather than increasing tech debt

2   An aggressive three-month close rate

3   �That 50% of flaws are closed closer to the three month mark, rather  
than the half year (or year) mark as with other application languages

Quite simply, the remediation curve must drop early like JavaScript  
to get similar results. 



VERACODE STATE OF SOFTWARE SECURITY 2023 25

S E C T I O N  T H R E EW H E R E  W E  A R E

Figure 15: Introduction of Flaws vs Still Open (JavaScript)

Authen�ca�on Issues

Code Quality

Creden�als Management

CRLF Injec�on
Cross-Site Scrip�ng (XSS)

Cryptographic Issues

Directory Traversal

Informa�on Leakage

Insufficient Input Valida�on

Authen�ca�on Issues

Cryptographic Issues

Deployment Configura�on

Encapsula�on

Informa�on Leakage

Session Fixa�on

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Pe
rc

en
t o

f A
pp

lic
a�

on
s w

ith
 F

la
w

 T
yp

es
 S

�l
l O

pe
n

90%0% 10% 20% 30% 40% 50% 60% 70% 80%

Percent of Applica�ons Introducing Flaw Types SAST DAST

Take a look back at the two similar graphs to Figure 15 
for .NET and Java (Figures 9 and 12), and look at the 
locations of the individual flaw categories. We see a 
very different picture with JavaScript, and we won’t 
repeat the reason. OK, maybe we will. It is the more 
aggressive remediation curve. Figure 15 is at the  
CWE category level and is just looking at the last  
12 months, comparing the percentage of applications 
that have introduced one or more flaw types to 
the percentage of applications that have that flaw 
type still open. Again, the lower left-hand corner is 
best, and note how much more compact and lower 
JavaScript is overall. 

Even though JavaScript is the top performing language  
of the three we’re exploring, applications in JavaScript 
are written by humans, and those humans are just as 
prone to introducing flaws (of any severity) as any other. 
When JavaScript developers do introduce certain CWEs 
they introduce a lot of them as well — a whole lot. Just 
like other languages. See Figure 16. Remember that 
Figures 16 and 15 are both looking at all flaws, as in 
previous similar plots.

Note: We’re not limiting or 
filtering based on the severity 
here (any flaw).



VERACODE STATE OF SOFTWARE SECURITY 202326

S E C T I O N  T H R E E W H E R E  W E  A R E

Figure 16: Percent of Applications with New Flaw with a CWE in Past Year (JavaScript)

Weaknesses Introduced by Percent of Applica	ons with Flaws

29.5%

29.9%

36.6%

42.6%

49.1%

49.6%

49.9%

55.9%

56.8%

75.1%

78.3%

91.5%

CWE-614
Sensi�ve Cookie in HTTPS

Session Without ‘Secure’ A�ribute

CWE-402
Transmission of Private Resources

into a New Sphere (‘Resource Leak’)

CWE-601
URL Redirec�on to Untrusted Site

(‘Open Redirect’)

CWE-80
Improper Neutraliza�on of Script-Related

HTML Tags in a Web Page (Basic XSS)

CWE-117
Improper Output Neutraliza�on for Logs

CWE-352
Cross-Site Request Forgery (CSRF)

CWE-259
Use of Hard-Coded Password

CWE-693
Protec�on Mechanism Failure

CWE-526
Exposure of Sensi�ve Informa�on
Through Environmental Variables

CWE-757
Selec�on of Less-Secure Algorithm

During Nego�a�on (‘Algorithm Downgrade’)

CWE-16
Configura�on

CWE-829
Inclusion of Func�onality

from Untrusted Control Sphere

The difference and the actionable takeaway here is that the teams that own JavaScript 
applications address the issues more quickly, as we saw back in our remediation curve in 
Figure 7. That type of progress is what yielded a much more compact scatter plot with a lower 
percentage of still open points closer to the bottom on the Y axis of Figure 15. As a reminder, 
the scatter plots for JavaScript, .NET, and Java in Figures 15, 12, and 9 display a one-year 
view of percentage introduced and percentage still open, where lower and to the left is better. 
JavaScript teams continue to remediate with a sizable head start, and the remediation curve 
continues to drop like a stone to that 14% chance that any flaw was still open at the end of 
two years. That should be the target for any language.



VERACODE STATE OF SOFTWARE SECURITY 2023 27

S E C T I O N  T H R E EW H E R E  W E  A R E

We are not afflicted by the Cassandra Complex 
where we know the future but are unable to 
do anything to prevent it. We know what the 
top flaws are for each language. We know  
that when flaws are introduced, they are 
introduced a lot. We can see that this likely 
affects the remediation curve and that when 
even one flaw is introduced it tends to stick 
around for a while. Compound this one flaw 
to many and these numbers become grim. 
Visualize that flaw volume and its impact.  
Think of the productivity of the teams stuck 
trying to burn down flaws after nobody  
clearly remembers what that part of the code 
does. Then of course consider the security 
posture of an application should flaws simply 
go into the backlog and either be mitigated 
in some fashion or accepted and forgotten. 
Through that volume, individual flaws may 
never be remediated. 

We will now begin to explore what other 
complications, in addition to those we’ve 
already discussed, await our applications  
as they age, and soon what we can do to 
reduce new flaw introduction.

Java

.NET

JavaScript

Summary of

S E C T I O N  T H R E EW H E R E  W E  A R E

VERACODE STATE OF SOFTWARE SECURITY 2023 27



S E C T I O N  F O U R H O W  W E  G OT H E R E

VERACODE STATE OF SOFTWARE SECURITY 202328 VERACODE STATE OF SOFTWARE SECURITY 202328

How We 
Got Here
29	 Application Size

30	 The Evolution of Applications and Their Flaws

Section Four



S E C T I O N  F O U RH O W  W E  G OT H E R E

VERACODE STATE OF SOFTWARE SECURITY 2023 29

Application Size
While we might think there is a correlation between 
application growth and the introduction of flaws, the 
overall picture is not that simple. Interestingly enough, 
the average application grows at about 40% per year 
regardless of its original size. In early analysis, we found 
an interesting parallel track of growth lines of small 
to large applications. We evolved that early analysis 
into Figure 17, which depicts the five-year size range. 
Growth tends to slow down after that to the 10-year 
mark, but flaws tend to pile up over that period. 

Figure 17: Application Size by Age of Application

16kB

64kB

256kB

1MB

4MB

16MB

10 2 3 4 5

Age of Applica�on (Years)

A
pp

lic
a�

on
 S

iz
e

10% of applica�ons are larger

10% of applica�ons are smaller

Median Applica�on Size

Applica�ons grow in size 
by about 40% on average 
every year in the first 5 years

Age of applica�on is the number 
of years on the Veracode Pla�orm

This yields two spots in the life cycle where growth 
and flaw accumulation seem to be decoupled. This 
calls into question the idea that growth always has  
a direct relationship with flaw introduction. Let’s have  
a look at how flaw introduction works. Our first graph 
shows that the growth range through five years is 
fairly constant and fairly predictable.



S E C T I O N  F O U R H O W  W E  G OT H E R E

VERACODE STATE OF SOFTWARE SECURITY 202330

The Evolution 
of Applications  
and Their 
Flaws

When we combine the remediation and fix rates (definitely not 100%) 
with the newly introduced flaws, it’s not a surprise that applications 
have more flaws over time. The sudden initial drop and the long tail 
growth in Figure 18 caught our attention. We could easily explain a 
new app being scanned for the first time with a load of flaw findings, 
followed by the teams quickly hammering the flaws and that security 
debt down. What happens next, though, breaks the relationship with 
application growth, but only temporarily. Seeing this pattern repeat  
in many different cuts of data, it became clear we were looking at  
a clearly defined application lifecycle from compiler to bitbucket. 

Figure 18 reflects flaws being introduced based on the age of an 
application as shown by a static scan. Following the initial onboarding 
of an application we see a rapid decrease. The application then 
enters what we are calling the “honeymoon period,” and for the first 
couple of years, things are stable. Despite the fact that we know that 
applications grow at about 40% per year, that trend is not matched by 
a commensurate number of new flaws. To the contrary, close to 80% 
of applications do not introduce flaws at all during this early life cycle 
phase. This is the first period where flaw introduction and growth are 
decoupled. Flaw introduction begins to climb steadily at around the 
one-and-a-half year mark and continues to climb until year five where 
something of a plateau is reached.

Many small and large decisions regarding budget, 
timelines, priorities, focus, and — perhaps most 
importantly — staffing, come together here. Other 
factors such as staff turnover, whether from attrition, 
promotion, or new hires, clearly come into it as well. 
A lot of hands and decisions find their way into the 
code after launch. For better or worse, this is how 
application owners, business stakeholders, and 
teams of developers choose through action and 
inaction, and these are the results.



S E C T I O N  F O U RH O W  W E  G OT H E R E

VERACODE STATE OF SOFTWARE SECURITY 2023 31

Figure 18: Flaw Introduction by Age of Applications

The “honeymoon phase” of applica�ons
where fewer flaws are introduced

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5

Age of Applica�on (Years)

Pe
rc

en
t o

f A
pp

lic
a�

on
s w

ith
 N

ew
 F

la
w

s

First scan may 
discover some 
accumulated flaws

Propor�on of applica�ons 
introducing new flaws 
grows over �me

Breaking Out Flaw  
Introduction by CWE  
Category and Age

Figures 19 and 20 shows newly introduced flaws broken out by 
CWE category. This is not a persistent or cumulative view, though 
we will get to that view soon. As in the consolidated timeline 
view introduced above in Figure 18, where we talked about the 
honeymoon, you can see that following the initial dip in flaw 
introduction the application goes through a period where flaw 
introduction slowly creeps up at a rate that does not match the  
40% growth track from Figure 17. Application growth is fairly 
constant throughout the lifecycle, whereas growth in flaw 
introduction is delayed. Something is clearly different than the  
first year and a half. The fuzzy plot lines in Figure 18 (and following 
plots) indicate that our certainty range opens due to applications  
of that age declining in number.



S E C T I O N  F O U R H O W  W E  G OT H E R E

VERACODE STATE OF SOFTWARE SECURITY 202332

Figure 19: Flaw Introduction Over the First 10 Years

4

Encapsula�on

Directory Traversal

Code Quality

CRLF Injec�on

Authen�ca�on Issues

Creden�als Management

Cross-Site Scrip�ng (XSS)

Informa�on Leakage

Time and State

SQL Injec�on

Insufficient Input Valida�on

Cryptographic Issues

0%

5%

10%

15%

20%

25%

0%

5%

10%

15%

20%

25%

0%

5%

10%

15%

20%

25%

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
0%

5%

10%

15%

20%

25%

Age of Applica�on (Years)

Pe
rc

en
t o

f S
ca

nn
ed

 A
pp

lic
a�

on
s

As in the previous section where we focused on languages, you can see that not all flaw 
categories are equal. For the analysis in this section we have consolidated languages, grouped 
by the overall percentage of how often flaws are introduced (when they are introduced.) The 
scale on the side of each box is the percentage of applications with the timeline at the bottom. 



S E C T I O N  F O U RH O W  W E  G OT H E R E

VERACODE STATE OF SOFTWARE SECURITY 2023 33

Figure 20: Flaw Introduction Over the First Five Years

0%

5%

10%

15%

0%

5%

10%

15%

0%

5%

10%

15%

0%

5%

10%

15%

Pe
rc

en
t o

f S
ca

nn
ed

 A
pp

lic
a�

on
s

Age of Applica�on (Years)

CRLF Injec�on

Code Quality

Directory Traversal

Encapsula�on

1 2 3 4 5

Informa�on Leakage

Cross-Site Scrip�ng (XSS)

Creden�als Management

Authen�ca�on Issues

1 2 3 4 5

Cryptographic Issues

Insufficient Input Valida
on

SQL Injec
on

Time and State

1 2 3 4 5



S E C T I O N  F O U R H O W  W E  G OT H E R E

VERACODE STATE OF SOFTWARE SECURITY 202334

We can only speculate what causes this increase in 
flaw introduction to occur over time, and why certain 
types of flaws seem more prevalent. Perhaps the 
fundamentals such as “Authentication Issues,” often 
handled up front during the design of the application, 
are less likely to appear, whereas techniques 
that require knowledge of inner workings of the 
architectural design may be touched or updated by 
people who were not familiar with how it was originally 
done. We have a lot of theories as to why this creep 
occurs but can’t say for sure. We would love to hear 
some of your ideas on this.

In the language-specific section above, starting with 
the remediation timeline through our examination of 
Java, .NET, and JavaScript, we mentioned that a slight 
increase in the rate of flaw introduction had an impact 
over time. Figure 21 shows that cumulative build-up. 
While this is an all-languages view, any application  
that cannot buck the trend of post-honeymoon 
hangover piles on flaws just like the rest of them.  
Some of these cumulative climbs are sadly rather 
dramatic over the years and create the foundation  
(and justification) for defining planned obsolescence. 

Clearly something other than ad hoc application 
retirement seems to be needed, as we can see in 
Figures 21 and 22. The reason we are talking about 
planned obsolescence is that after the five-year  
mark, flaw categories that were fairly tame suddenly 
wake up and begin a period of introduction as  
seen in Figure 19, and then accumulation as  
shown in Figure 21. 

The rate of flaw introduction is not shockingly 
different in years five to ten despite the fact that 
we know application growth rate slows down after 
year five. But that accumulation view tells a story. 
This is the second period where age of an application 
and flaw introduction are decoupled, but with vastly 
different results than the honeymoon period.

Pe
rc

en
t o

f S
ca

nn
ed

 
A

pp
lic

at
io

ns

Age of Application (Years)

Authentication Issues (First Five Years)

0%

5%

10%

15%

0%

5%

10%

15%

0%

5%

10%

15%

0%

5%

10%

15%

Pe
rc

en
t o

f S
ca

nn
ed

 A
pp

lic
a�

on
s

Age of Applica�on (Years)

CRLF Injec�on

Code Quality

Directory Traversal

Encapsula�on

1 2 3 4 5

Informa�on Leakage

Cross-Site Scrip�ng (XSS)

Creden�als Management

Authen�ca�on Issues

1 2 3 4 5

Cryptographic Issues

Insufficient Input Valida
on

SQL Injec
on

Time and State

1 2 3 4 51 32 4 5

15%

10%

5%

0%

Pe
rc

en
t o

f S
ca

nn
ed

 
A

pp
lic

at
io

ns

Age of Application (Years)

Authentication Issues (First 10 Years)

4

Encapsula�on

Directory Traversal

Code Quality

CRLF Injec�on

Authen�ca�on Issues

Creden�als Management

Cross-Site Scrip�ng (XSS)

Informa�on Leakage

Time and State

SQL Injec�on

Insufficient Input Valida�on

Cryptographic Issues

0%

5%

10%

15%

20%

25%

0%

5%

10%

15%

20%

25%

0%

5%

10%

15%

20%

25%

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
0%

5%

10%

15%

20%

25%

Age of Applica�on (Years)

Pe
rc

en
t o

f S
ca

nn
ed

 A
pp

lic
a�

on
s

2 64 8 10

25%

20%

15%

10%

5%

0%



S E C T I O N  F O U RH O W  W E  G OT H E R E

VERACODE STATE OF SOFTWARE SECURITY 2023 35

Figure 21: Flaw Accumulation Over the First 10 Years

0%

20%

40%

60%

0%

10%

20%

30%

40%

50%

0%

10%

20%

30%

0%

5%

10%

15%

20%

0%

20%

40%

60%

0%

20%

40%

60%

0%

10%

20%

30%

40%

50%

0%

5%

10%

0%

20%

40%

60%

0%

20%

40%

60%

0%

10%

20%

30%

40%

50%

60%

0%

10%

20%

30%

40%

CRLF Injec�on Informa�on Leakage Cryptographic Issues

Code Quality Cross-Site Scrip�ng (XSS) Insufficient Input Valida�on

Directory Traversal Creden�als Management SQL Injec�on

Encapsula�on Authen�ca�on Issues Time and State

Pe
rc

en
t o

f S
ca

nn
ed

 A
pp

lic
a�

on
s

Age of Applica�on (Years)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Note: The scales are very different for each CWE 
category top to bottom in Figure 21 since the flaws 
are present in different percentages of applications.  



S E C T I O N  F O U R H O W  W E  G OT H E R E

VERACODE STATE OF SOFTWARE SECURITY 202336

To round out our look at the introduction of flaws 
into applications, we wanted to have a top down 
view of how applications fare over the years. To 
get this view, we took the last scan per application 
per month and looked for the percentage of 
applications with any flaws. We can see when we 
take a CWE and CWE category neutral approach 
that the percentage of applications with flaws climbs 
as applications age, and the percentage climbs 
differently than the previous graphs, except for the 
CWE category “cumulative view” we just looked at 
in Figure 21. The percentages are different, because 
we’ve zoomed out in Figure 22 to include any flaws, 
giving more of a chance for inclusion. 

0%

25%

50%

75%

1 2 3 4 5 6 7 8 9 10

Age of Applica�on (Years)

Pe
rc

en
t o

f A
c�

ve
 A

pp
s w

ith
 A

ny
 F

la
w

s

About 53.5% of two-year old
applica�ons have flaws

About 69.4% of five-year old 
applica�ons have flaws

Figure 22: Flaw Accumulation by Age of Applications

Out of all the apps younger than one year old, fewer  
than half carry any flaws. We can see that by the time  
an application is two years old there is a 54% chance  
it is carrying at least one flaw and maybe many more.  
As those same applications mature and evolve, at least  
two out of three are carrying at least one flaw by the time 
they are four or five years old. This trend continues up  
to the ten-year mark where nine in ten applications have 
at least one flaw. A quick look back at the percentages 
in Figure 21 allows us to assume that based on this 
cumulative view there are probably many more.



S E C T I O N  F I V EM O D E L I N G  FA C TO R S  T H AT I N F L U E N C E  F L AW  I N T R O D U C T I O N

VERACODE STATE OF SOFTWARE SECURITY 2023 37

In SoSS v11 and v12 we talked about the benefits of developer 
enablement, and we’ve talked a bit about flaw awareness so far 
this year. We wanted to explore other things that might help 
teams hit the objective of introducing fewer new flaws, so we 
began digging around in the data.

Modeling  
Factors That  
Influence Flaw 
Introduction 

VERACODE STATE OF SOFTWARE SECURITY 2023 37

Section Five



S E C T I O N  F I V E M O D E L I N G  FA C TO R S  T H AT I N F L U E N C E  F L AW  I N T R O D U C T I O N

VERACODE STATE OF SOFTWARE SECURITY 202338

0%

25%

50%

75%

100%

0 100 200 300

Days Since Sta�c Flaw Found

Pe
rc

en
t o

f F
la

w
s S

�l
l O

pe
n

Some eLearning 
courses completed
Some eLearning 
courses completed

No eLearning
courses completed
No eLearning
courses completed

Figure 23: Time spent learning in Veracode Security Labs

A look back at SoSS v12 

To tackle a macro trend like this, we wanted to take the largest data set 
possible and look for markers that positively and negatively correlate to flaw 
introduction. We wound up with over one-and-a-half million application scan 
months. Then we examined different cuts of the data on different timelines to 
determine whether the analysis was consistent. Each scan month represents 
one unique application scan per month. The application in question had to 
have size information available and had to have been scanned more than once 
to avoid random noise that would result in a single point with no trending.

Training and Flaw Remediation
In Figure 23, taken from SoSS v12, we demonstrated how completing 
training influences remediation time. This year we wanted to have  
a look at a similar group of factors to see whether we can reduce  
the likelihood of new flaws being introduced at all. 

If we do introduce flaws, then what influences the volume  
of flaws being introduced? 

S E C T I O N  F I V E M O D E L I N G  FA C TO R S  T H AT I N F L U E N C E  F L AW  I N T R O D U C T I O N

VERACODE STATE OF SOFTWARE SECURITY 202338



S E C T I O N  F I V EM O D E L I N G  FA C TO R S  T H AT I N F L U E N C E  F L AW  I N T R O D U C T I O N

VERACODE STATE OF SOFTWARE SECURITY 2023 39

We needed to account for a few observations:

1   ��Many applications had no flaws introduced 
at all, but this could be a result of not  
having been scanned (or no growth). 

2   ��Since no flaws could be just no code  
written at all or nothing changed, size  
data helps determine whether there  
has been a change.

Other things we wanted to answer:

1   �What is the chance that flaws are  
introduced at all?  

2   ��Once a flaw is introduced, how  
widespread is it?  

3   �Something separates no flaws from  
some flaws (or a lot of them) so what  
is it? Age? Inactivity? Skill? Training?  
CI/CD automation? Scan cadence?  
Mercury in retrograde?

2.2%

1.3%

0.6%

-0.4%

-1.4%

-1.8%

-2.0%

Flaw Density (Flaw/1mb)

Months Since Last Scan

App Size (10% Change)

Scans Last Month

Age of App (Years)

10 Trainings Completed

Scanning via API

Reduces the Probability New Flaws Are Introduced

Increases the Probability New Flaws Are Introduced

Figure 24: Factors Influencing the Probability 
of Flaw Introduction

Note: To deal with the negative space we 
needed to adjust the way we were looking 
at this data set. We chose a hurdle model to 
capture when something crosses a threshold 
(in this case a flaw being introduced) and 
when it does, we examine its attributes.

In our first examination, we found that there was 
about a 27% chance that an application will introduce 
one or more new flaws every month. Remember this 
number (27%) as we move through the narrative. 

We know from other analysis that those applications 
that introduce flaws tend to introduce a lot of them. 
Figure 24 below shows how that 27% chance of 
introducing a flaw can be influenced. We wanted to 
understand how these factors can shift the probability 
a flaw will be introduced up or down and whether 
there was a compound effect. 

The reduction or increase here is noted as a  
percent change in newly introduced flaws per month, 
Remember that the starting baseline is a 27% chance 
of one or more flaws being introduced. The next 
section all refers to Figure 24.



S E C T I O N  F I V E M O D E L I N G  FA C TO R S  T H AT I N F L U E N C E  F L AW  I N T R O D U C T I O N

VERACODE STATE OF SOFTWARE SECURITY 202340

Training

The next stop is training, and that has a rather obvious 
connection to flaw introduction. Security Labs trainings 
exist to educate developers on the different types of 
flaws and how to avoid introducing them into their code. 
We had done some basic analysis in SoSS v12 on the 
impact of Security Labs and wanted to revisit it, confirm 
the benefit, and complete some further analysis.  
Figure 24 draws a line at 10 trainings (causing a 1.8% 
drop in flaw introduction per month on average), but  
10 isn’t a magic number — when developers complete 
any number of Security Labs, flaws are less likely to  
be introduced, and the more training the better! 

Age of the Application

Age of the application in this model actually represents 
years on the Veracode Platform. For every year the 
application is scanned on the Veracode platform  
(proxy for “age”), we can expect an average drop of  
1.3% in the probability of one or more flaws being 
introduced. Again, this is a continuous variable, so  
six months is half the effect on average, and so on. 
The drop associated with age is only possible if all 
else remains constant. Relatively constant flaw density 
and very slow growth would be required to see a net 
reduction. We’ll touch this point again when discussing 
application size, where we’ll see to what degree those 
factors cancel out any benefits from age.

Scans Last Month

Not a surprise, but if an application scanned more  
the month before, it was slightly less likely to introduce 
one or more flaws this month. We talked about this  
in previous years as scan cadence and decided to go 
with scans last month because of those results. We  
also divided the cadence metric so cadence can give  
or take. You’ll see the other side of the coin in a bit.

Figure 24 represents factors 
that influence if flaws are 
introduced. Figure 25 examines 
the factors that influence how 
many flaws are introduced 
when they are introduced. 
These factors can pay off  
or penalize twice.

Scanning Via API

When we see applications integrate code scanning 
into their pipeline via API scanning, we see the 
probability that flaws are introduced drop by 2% on 
average. This is the largest apparent jump, but before 
you get underwhelmed by a 2% drop, remember  
that it affects our base 27% chance and reduces  
to 25% (in other words, this represents a 7.4% drop 
from 27% to 25%). The API scan doesn’t itself make 
things more secure, but it is an indicator of maturity. 
If an organization is using automation that abstracts 
human interaction, then we can assume it has other 
things in place, such as access control to the pipeline 
(but that is an assumption). So, we have reduced our 
base chance from 27% to 25%. 



S E C T I O N  F I V EM O D E L I N G  FA C TO R S  T H AT I N F L U E N C E  F L AW  I N T R O D U C T I O N

VERACODE STATE OF SOFTWARE SECURITY 2023 41

Application Size 

An increase of the application size by 10% (which  
is a rather large shift in size) is 0.6% more likely to 
introduce one or more new flaws. This number was 
slightly surprising, given our other analysis in which 
age and flaw introduction seemed decoupled in 
several phases of the application life cycle. 

As mentioned, growth and age are not always tied, 
but as applications grow, they do become more 
complex. Given our yearly growth rate of 40% as 
seen in Figure 17, you see that over time the chance 
of flaws associated with growth (40% growth yields 
2.4%) cancels out the reduction in chance that age 
brings with it. This explains the views we had where 
flaw introduction in applications creeps upwards  
after the first couple of years.

Months Since Last Scan

When we look at “months since last scan,” the results 
are just common sense: the longer one waits to scan an 
application, the more likely it is to discover one or more 
flaws when the app is scanned. For every month delay 
in scanning, we’d expect an average increase of 1.3% in 
the likelihood of flaw introduction. This is the other side 
of the coin of regular cadence: if it’s been a while, flaws 
quickly pile up (6 months is +7.8%). 

Flaw Density

Applications with higher security debt (as measured  
by flaw density of one flaw per one mb of code)  
are more likely to introduce flaws moving forward.  
Going back to Figures 18, 21, and 22, you can see  
that applications with higher flaw density tend to be  
at one end or the other of their lifecycle.

5.1%

3.3%

2.7%

-1.6%

-6.2%

-12.1%

-17.9%

Months Since Last Scan

Flaw Density (Flaw/1mb)

App Size (10% Change)

Reduces the Amount of Flaws Being Introduced

Increases the Amount of
Flaws Being Introduced

Scans Last Month

Age of App (Years)

10 Trainings Completed

Scanning via API

Figure 25: Factors Influencing the Number of Flaws Introduced

Note: Figure 25 measures the flaw 
density prior to the application-scan-
month, so the newly discovered flaws 
are not included in the metric.



S E C T I O N  F I V E M O D E L I N G  FA C TO R S  T H AT I N F L U E N C E  F L AW  I N T R O D U C T I O N

VERACODE STATE OF SOFTWARE SECURITY 202342

If we consider the 27% probability per month that 
flaws will be introduced, about 73% of months in 
which applications have been scanned have zero 
flaws, which is rather significant. When flaws were 
introduced, the fascinating thing that happens is 
that the same factors that reduce the chance of 
introducing flaws in the first place also reduced the 
volume of flaws introduced. Sort of a double dip 
moment. In Figure 25, we can see a familiar view of 
the factors that reduce and increase the number of 
flaws if and when flaws are introduced. It is interesting 
that they line up neatly on the same sides as they did 
in Figure 24.

We return to our assumption that Scanning via API is 
related to programs that employ automation and limit 
human interaction with the pipeline. It seems that 
organizations that build in automation so that scans 
are launched via API perform better, reducing the 
chances of introducing flaws at all (per month). Then 
according to Figure 25, they also enjoy a reduction of 
18% in the number of flaws introduced when they do.

Remember in Figure 24 in which we showed that 
Security Labs training had an increasing benefit based 
on the number of courses completed? When we 
consider Figure 25, once again 10 trainings completed 
isn’t a waterfall type of number. Benefits in reducing 
the number of flaws introduced are seen even with a 
single training, and we again find the data is letting us 
know that the more training completed the better. 

When it comes to the number of flaws introduced, the 
age of the application is an interesting factor to examine. 
In the discussions about Figure 24, we mentioned that 
growth and flaw density tend to cancel out the benefits, 
and we are left with a slowly ascending line that we 
have seen in many of the plots so far. Age is in itself a 
factor that reduces flaw count if everything else remains 
constant, but not everything does remain constant,  
does it? If code is written at a usual pace to yield a  
40% growth rate, then the 2.7% from 10% growth  
in Figure 25 becomes 10.8% (+4.6% net effect when 
combining age and growth).

One curious difference between Figure 24 (chances  
of introducing) and Figure 25 (count of flaws introduced) 
is that months since the last scan and flaw density have 
flipped positions for least helpful. As we mentioned 
before, skipping months seems to simply increase the 
chances of finding something when a scan is run. The 
issue with a broken or extended cadence is how things 
add up, potentially leading to something that would yield 
a less optimal remediation curve. Since we are viewing 
how many flaws are introduced in Figure 25, the data 
indicates that this percentage impact is on the number  
of flaws introduced and it compounds at a 5.1% rate  
per month. Ouch.



S E C T I O N  S I XF R A G I L I T Y O F  O P E N  S O U R C E

VERACODE STATE OF SOFTWARE SECURITY 2023 43

Fragility of  
Open Source
48	 Is there an impact of Open Source on quality?

52	 Recommendations for Open Source

VERACODE STATE OF SOFTWARE SECURITY 2023 43

Section Six



S E C T I O N  S I X F R A G I L I T Y O F  O P E N  S O U R C E

VERACODE STATE OF SOFTWARE SECURITY 202344

Developers build their applications using libraries 
completely outside their control, establishing 
dependencies for basic functions that an application 
needs. Some of these dependencies then introduce 
further dependencies and things move fast out 
there. This follows along on our top three discussion 
about flaw introduction, tech debt accumulation, 
and lifecycle management. For this report, we took 
some first steps to analyze and profile open-source 
repositories. Not reinventing the wheel has obvious 
rewards, but open source is not free. It cedes control 
and introduces external dependencies. 

For each publicly disclosed vulnerability, we can only 
speculate how many undisclosed and undiscovered 
vulnerabilities there really are waiting to hit the  
news and launch us all into the next panic. Aside  
from scattergun technical controls and herculean 
response tactics, what steps can organizations take  
to reduce their exposure and improve their response 
if they are affected? 

Log4j4 was a wakeup call, or at least it should  
have been. Certainly it tested the response and 
readiness capabilities for many teams. The nature  
of the response depended on the level of visibility  
an organization had into the application composition  
and exposure. Whatever the end of 2021 was,  
history tells us we will get to do it again.

How do you determine what is safe or not safe  
to use? Is it by repository? Repository owner type? 
Contribution cadence? Some mystical reputation 
score calculated through some opaque process?  
The answer is not as simple as you may think,  
and anyone who thinks it is will hopefully see  
why soon enough.

4 �For Veracode Log4j resources have a look here: www.veracode.com/log4j-vulnerability-resources

Given some of the recent focus 
on the Software Bill of Materials 
(SBOM), we thought this would 
be a good year to examine other 
factors that can introduce flaws. 
To a large degree this is the great 
unknown of open source. 

http://www.veracode.com/log4j-vulnerability-resources


S E C T I O N  S I XF R A G I L I T Y O F  O P E N  S O U R C E

VERACODE STATE OF SOFTWARE SECURITY 2023 45

of third-party libraries 
are hosted in GitHub 

91

Figure 26 breaks down the proportion of identified libraries in use  
that we have correlated to a public repository on GitHub. For example, 
JavaScript applications tend to include quite a few third-party libraries, 
and out of the 21,000 unique libraries we found in use in actual 
applications. Out of the libraries in use in JavaScript applications,  
we were able to correlate 91.8% of those (about 19,000) to a public 
GitHub Repository. Connecting to the repository enables us to collect 
more information about each library, including licenses in use, how  
long the library has been around, how actively it’s maintained and  
how many developers are contributing to the code base. 

1.5k of 5k (30.1%)

3.3k of 11k (31.2%)

785 of 2.2k (35.2%)

1.8k of 2.5k (72.5%)

300 of 348 (86.2%)

19k of 21k (91.8%)

2.3k of 2.4k (96.8%)

1.1k of 1.1k (99.7%)

.NET

Java

Ruby

Python

Objec�ve-C/Swi�

JavaScript

Go

PHP

Percent of Dis�nct Libraries with Known Repositories

Figure 26: Percent of Unique Libraries in Use with a GitHub Repository (by Language)

We completed an analysis of those GitHub repositories scanned  
with composition analysis to begin to peer into what is out there.  
Out of millions of repositories hosted publicly on GitHub, we 
identified 29,783 that were actively used in production code by 
Veracode customers. This means this is not just a dragnet analysis 
looking for what we might arbitrarily think is malicious or filtering 
using stars or some other method for inclusion/exclusion. The repos 
in this analysis are actually included in production code. What we 
are measuring is the fragility of legitimate packages.

Note: 51.8% of .NET libraries 
have a repository URL just 
listed as “dot.net,” and 7.5% 
have just “asp.net” listed, 
making it difficult to talk  
about .NET libraries. 

To do any analysis we would  
have to look at the specific  
details of contributors to  
figure out which ones are MSFT 
employees and which ones are 
community. We decided to stick 
to GitHub for this year.

https://dot.net/
https://asp.net/


S E C T I O N  S I X F R A G I L I T Y O F  O P E N  S O U R C E

VERACODE STATE OF SOFTWARE SECURITY 202346

Now that we have established 
which libraries in use by 
applications have a valid and 
public repository, we wanted 
to look at the demographics. 
Repositories can either be 
owned by “user” or “organization” 
in GitHub. Within GitHub, 
repositories with “organization” 
as the owner have other 
functionality and are generally 
used on more serious/mature 
projects; this gave us the  
overall account demographics 
within GitHub prior to looking  
at popularity.

Of these, we then looked at 
the 100 most-used packages 
to understand the account 
demographics and the plot above 
Figure 27 gave way to Figure 28. 
In Figure 28 we see about 75% 
of the 100 most-used packages 
are owned by organizations,  
and a smaller but still substantial 
number are indicated as owned  
by “user” accounts.

52.8%

User Organiza�on

47.2%

Pe
rc

en
t o

f R
ep

os
ito

rie
s

User Organiza�on

27.0%

73.0%

Pe
rc

en
t o

f T
op

 1
00

 R
ep

os
ito

rie
s

Figure 27:  
Owner Types Across  
All Repositories

Figure 28:  
Owner Types Across  
Top 100 Repositories



S E C T I O N  S I XF R A G I L I T Y O F  O P E N  S O U R C E

VERACODE STATE OF SOFTWARE SECURITY 2023 47

0

300

600

900

Co
un

t o
f R

ep
os

ito
rie

s

0 2 4 6 8 10 12 14

1200

Age of Respository (Years)

Figure 29: Age of Repositories

Examination of the dates in the base information for each repository gives us a 
distribution that shows the age of our sample by creation date in Figure 29 below.  
The bulk of the distribution curve in our analysis is between four and 10 years.  
To be precise: 50% of libraries are between five years and eight years, six months.  
On the outside edges, 10% are less than three years, four months and 10% are  
older than 10 years, three months. 

We offer this up purely to be informational. Before we collected the data, we weren’t 
exactly sure how common 10-year old libraries were, nor what would be considered a 
“young” library. But once we created Figure 29, it helped us see the almost bell-shaped 
curve peaking around seven years. As a reminder, these are the valid repositories and 
their libraries that have appeared in software composition analysis scans.

The bulk of the distribution curve 
is between four and 10 years.



S E C T I O N  S I X F R A G I L I T Y O F  O P E N  S O U R C E

VERACODE STATE OF SOFTWARE SECURITY 202348

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1K 10K
Number of Contributors

Pe
rc

en
t o

f R
ep

os
ito

rie
s (

Cu
m

ul
a


ve
)

Half of the repositories scanned
had less than 10 contributors

One in 10 repositories had a single developer

One in 10 repositories had 
more than 72 developers

Figure 30: Number of Contributors per Repository

Is there an impact of Open Source on quality?
Now that we have established the demographics for 
the valid repositories in GitHub, we started examining 
contribution cadence and project team size (Figures 30 
and 31). That’s when our research led us into a mostly 
philosophical area where we are going to have to 
accept that we don’t know the answer (this year). 

Are repository demographics and low commit cadence 
representative of potential problems? Is the last commit 
indicative of inactivity? Are either of these things  
cause for concern? We illuminated a few things, and 
more questions came up. We feel our work here raises 
some real questions and challenges the conventional 
wisdom around pre-calculated “confidence scores.”  
This research should spur some healthy debate on  
what constitutes a healthy or safe library or repository.

The first thing we had to accept as imprecise was the 
number of contributors. This is a bit tricky to count. 
Why? Because some developers may commit from 
different email addresses, they will be counted twice. 
Our estimate is that the following graph (Figure 30) 
could be over-counting by maybe 10%. In any case,  
we can see that about half of repositories have 10 or 
fewer contributors, about one in 10 repositories had  
a single contributor, and about one in four repositories  
had more than 25 contributors listed. 



S E C T I O N  S I XF R A G I L I T Y O F  O P E N  S O U R C E

VERACODE STATE OF SOFTWARE SECURITY 2023 49

Once we identified our 
distribution of contributor 
count by repository, we 
had a look at when the 
last commit was on each 
library in Figure 31.

And the award for most contributors goes to: 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12

Years Since Last Commit

Pe
rc

en
t o

f R
ep

os
ito

rie
s (

Cu
m

ul
a	

ve
)

One in five repositories have commi�ed 
new code in the past month

One in four repositories had their 
last commit more than 3.5 years ago

One out of every 10 repositories had their 
last commit more than almost six years ago

Half of the repositories have not had any commits 
in the last year (but half have had commits)

Figure 31: Years Since Last Repository Commit

The Bus Test

In terms of business continuity management / disaster recovery (BCM/DR) 
when risk comes up, the bus test comes out. It goes like this: how many 
people must be hit by a bus in order to stop a project completely? That’s your 
bus test number. If you find the bus test to be a distastefully morbid image, 
you can substitute it with other paradigms for the same results. Vacation. 
Attrition. Promotion. Alien abduction. Pick your project poison. When dealing 
with the bus test, lower numbers are bad, since lack of fault tolerance 
becomes the effective risk to the project.

1  	

“DefinitelyTyped” 

Analysis through the API showed  
this repository had 18,948 contributors  
(their website is slightly out of date  
and claims 15.5K). This top spot honor  
is oddly ironic.

github.com/DefinitelyTyped/DefinitelyTyped  

2   

“Ruby on Rails” 

�With just over 5,000 
contributors through  
our API analysis.

github.com/rails/rails

http://github.com/DefinitelyTyped/DefinitelyTyped
http://github.com/rails/rails


S E C T I O N  S I X F R A G I L I T Y O F  O P E N  S O U R C E

VERACODE STATE OF SOFTWARE SECURITY 202350

2.9%

1.3%

1.9%

2.8%

10.1%

12.2%

13.2%

55.5%

Other Licenses (25)

BSD-2-Clause

ISC

BSD-3-Clause

NOASSERTION

No License Defined

Apache-2.0

MIT

Percent of Repositories

Java (75k Apps) .NET (9.5k Apps)

Ac�ve Inac�ve Ac�ve Inac�ve Ac�ve Inac�ve

Two or
More

Single

Ac
vity Within the Past Year

Contribu
ng
Developers

18.7%

0.0%

71.4%

9.9%

2.5%

0.0%

5.6%

91.9%

17.1%

0.7%

59.1%

23.1%

JavaScript (25k Apps)

Figure 32: License Types from Libraries in Use with Repositories in GitHub

Figure 33: Percent of Applications by Developers and Activity (by Language)

By looking at each of the applications on which Veracode has 
done SCA scans, and knowing the third-party libraries in each, 
we can count applications that depend on at least one library 
with either a single point of failure (single developer) or that 
aren’t being actively maintained (no code commits for over  
a year). When the graphic below (Figure 33) appeared as  
a combination of Figure 30 and 31 we knew we’d hit 
something, but what? 

Note: Not paying attention to licensing can 
introduce risk to a commercial application. 
This issue can come up at inopportune 
moments. Such as when due diligence is 
performed during a merger or acquisition. 
No license means no usage rights, and that 
is why it is important not to ignore this. 

Another example is the commercial 
implications of inclusion of a single GPL 
library. Under GNU GPL that inclusion 
means the entire program must be covered 
under a GPL compatible license. Licensing 
can be a real blind spot, so it is advisable  
to get a handle on it. 



S E C T I O N  S I XF R A G I L I T Y O F  O P E N  S O U R C E

VERACODE STATE OF SOFTWARE SECURITY 2023 51

For starters, given the “lowest of the group”  
flaw density in JavaScript, what does it mean 
when 92% of applications use at least one library 
maintained by a single contributor with zero 
contributions in the last year? Are these apps more 
brittle or fragile due to these seemingly absentee 
landlord dependencies or are they fine?

We have accepted that we don’t know what the 
practical implications of single or infrequent are. 
Perhaps a single developer wrote some great  
bomb-proof code years ago, but since it is epic 
code and does exactly what it says on the tin, that 
developer moved along. To carry this further, if no 
flaws have been reported on it, then no updates are 
needed. Right? Maybe the only thing that needs to  
be done in the next 16 years is an update before 
January 2038. 

At this point, our theoretical semi-perfect code  
and some abandoned bug-infested project cannot  
be distinguished by this method, and they would 
both be categorized as either infrequent and single 
developer (or both). To complicate matters, in the 
last few years supply chain poisoning and repository 
typosquatters5 are beginning to use a successful 
recipe that spammers came up with in the mid 2000s. 
They employ assembly line tactics with increasing 
volume to evade signature-based detection and  
might even at first host code that hashes legit 
(pending their “update”). This arms race has just 
begun. Contributions to adjacent typosquatter 
repositories may very well be within the last year,  
but rather than an indication that the repository  
(or the libraries within) is active and good, those  
are going to be bad.

Taking it further and thinking about application 
architecture, do we want to know about these types 
of repositories filled with dormant libraries? What if 
your application requires a component that cannot be 
easily substituted? Suddenly this obscure component 
makes the front-page news and the creator has 
long since disappeared. This gets worse if you don’t 
understand exactly how or why the third-party code 
works, and the author of that third-party library is 
grabbed by a passing flying saucer. That’s also a 
potential licensing problem too, in which suddenly a 
cease and desist or an audit turns something up and 
the library can no longer be used (see Figure 28).  
At what point, then, does the aforementioned  
“bus test” become relevant, and what steps should 
you take to mitigate it? These are all pitfalls of modern 
application architecture when we reuse code created 
by third parties. 

Hopefully by now you can see that this simply  
cannot be hit with a wide brush. The more we talked 
about it internally, the more we decided that this is a 
discussion that needs more research, and we’ll share 
when that’s ready. There are clearly two sides to  
the story here and we look forward to continuing  
our research. 

5 �	�FDARKReading. Novel npm Timing Attack Allows Corporate Targeting. www.darkreading.com/application-security/novel-npm-timing-attack-allows-corporate-targeting

	� Bleeping Computer. October 23. Software downloads for private citizens — 200 ongoing attacks (more recent 600 domains) www.bleepingcomputer.com/news/
security/typosquat-campaign-mimics-27-brands-to-push-windows-android-malware

http://www.darkreading.com/application-security/novel-npm-timing-attack-allows-corporate-targeting
http://www.bleepingcomputer.com/news/security/typosquat-campaign-mimics-27-brands-to-push-windows-android-malware
http://www.bleepingcomputer.com/news/security/typosquat-campaign-mimics-27-brands-to-push-windows-android-malware


S E C T I O N  S I X F R A G I L I T Y O F  O P E N  S O U R C E

VERACODE STATE OF SOFTWARE SECURITY 202352

6	�The owner of left-pad pulled the package after a dispute over naming of another unrelated package called Kik. The results of the take-down 
caused a major dependency breakdown and service interruptions. www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program

Recommendations for Open Source
Some common-sense suggestions include:

1  	� Prioritize your efforts by looking at vulnerable methods  
analyses and the existence of public exploits. 

	� Consider that it might take weeks or months for a vulnerability 
to appear in the National Vulnerability Database (NVD) and how 
much advance warning means to your team. Any SCA solution 
in use should leverage multiple sources for flaws (not just NVD) 
to give advanced warning to teams. Once a vulnerability is 
disclosed (even via unofficial channels), it’s a race against the 
clock to when active exploitation begins. It might take weeks  
to months for a vulnerability to appear in the NVD, and by then, 
in-the-wild exploits may have already begun.

2  	�� Set organizational policy around what vulnerabilities you’re 
willing to accept, understanding that different applications  
will have different risk profiles and risk tolerances. 

	� It’s more sustainable to enforce policy programmatically  
than trying to maintain an internal repo of “safe” libraries,  
which can be too resource intensive for all but the most  
well-staffed organizations. 

3  	� �Consider ways to reduce your third-party dependencies. 

	� Think back to 2016 and the left-pad package6 that was 11 lines 
long. For simple “shortcut” code that is included by default, ask 
why it is included. Especially if it introduces new dependencies 
that are required in order for your code to work. If developers 
can write the code easily, and it’s low risk to do so, then try 
to reduce dependencies that can introduce fragility, or worse, 
increase your attack surface. It is worth calling out that no one 
should be trying to roll their own crypto!

In the interim, are 
there any steps you  
can take to reduce  
the risk posed by  
open-source libraries? 

S E C T I O N  S I X F R A G I L I T Y O F  O P E N  S O U R C E

VERACODE STATE OF SOFTWARE SECURITY 202352

http://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program


S E C T I O N  S E V E NA N  O U N C E  O F  P R E V E N T I O N  I S  W O R T H  A P O U N D  O F  C U R E

VERACODE STATE OF SOFTWARE SECURITY 2023 53

An Ounce of  
Prevention is  
Worth a Pound  
of Cure
Concrete Steps to Improve Your Application 
Security Program for 2023 and Beyond

54	 Step 1: Steepen the Curve

55	 Step 2: Prioritize Automation and Developer Training

56	 Step 3: Establish Application Lifecycle Management

VERACODE STATE OF SOFTWARE SECURITY 2023 53

Section Seven



S E C T I O N  S E V E N A N  O U N C E  O F  P R E V E N T I O N  I S  W O R T H  A P O U N D  O F  C U R E

VERACODE STATE OF SOFTWARE SECURITY 202354

Steepen the Curve
As a result of this research, our first piece of 
guidance has its foundation in the Remediation 
Curve (Figure 7) where we observed the clear 
differences in flaw profiles between Java, 
.NET, and JavaScript. Additional focus on flaw 
remediation seen in JavaScript returns quantifiable 
improvements over the lifecycle of an application, 
and its effective security posture. 

Quite simply the remediation curve has to 
fall early and fall faster, since, by the time an 
application is two years old, we see applications 
accumulate flaws. It is clear that something 
happens to the application or to the groups 
developing them. Whether increasing application 
complexity from years of steady growth or 
diminishing focus on production applications  
over time, this familiar pattern of an upwards  
slant is clear to see in Figures 18 through 22.  
We do know that by the time an application  
is 10 years old there is a 90% chance that it  
has at least one flaw.

1

Quite simply the 
remediation curve 
must fall early and fall 
faster. Teams must take 
steps to reduce the 
factors that result in 
accumulation of flaws 
as our applications go 
through their lifecycle.

When it comes to application security programs, what separates the middle of the 
pack from the front (or the back) of the maturity curve? Seemingly small percentages 
that translate into larger differences over time. Factors that can be influenced.  
It’s time to put what we’ve learned in this report into practice.

Step

S E C T I O N  S E V E N A N  O U N C E  O F  P R E V E N T I O N  I S  W O R T H  A P O U N D  O F  C U R E



S E C T I O N  S E V E NA N  O U N C E  O F  P R E V E N T I O N  I S  W O R T H  A P O U N D  O F  C U R E

VERACODE STATE OF SOFTWARE SECURITY 2023 55

We strongly recommend 
developer training. We 
see that it is effective in 
avoiding introducing flaws 
and reducing the count 
when flaws are introduced. 
In SoSS v12 we saw that 
companies taking at least 
one Veracode Security 
Labs course reduce the 
time to remediate 50% of 
flaws by 35%.

Prioritize Automation 
and Developer Training
In SoSS v11 we examined the set of factors that 
contribute to remediation, and this time around we  
broke many of the same factors out and examined  
how they help prevent flaws from being introduced  
in the first place. The good news is that things like  
scan cadence, scanning via API, and developer security 
training hold up as beneficial for both flaw introduction 
and remediation.

Developer awareness of which categories of CWE  
(and even individual CWEs) are introduced is a good 
starting spot for creating targeted training programs.  
We have presented this data on a per language basis  
so that teams can appropriately prioritize to get the  
most bang for the buck. 

Refer to:

   Java (Figures 8, 9, and 10)

   .NET (Figures 11, 12, and 13)

   JavaScript (Figures 14, 15, and 16)

Not introducing flaws in the first place helps in a  
big way, and we saw this go one step further this 
year. Those same factors that affect introduction and 
remediation also impact the number of flaws introduced 
in those months where flaws are introduced. To visualize 
the impact of training please refer to Figure 23, and the 
overall positive and negative influencers in Figures 24 
and 25. Automation might be a work in progress for some 
teams, but training is within reach and should be a priority 
given its benefits. For those teams that want a quicker 
return on the time investment, consider targeting the top 
flaws and CWEs for the languages in use. In short, we’ve 
given solid guidance for how to reduce the number of 
flaws introduced in the first place.

2Step



S E C T I O N  S E V E N A N  O U N C E  O F  P R E V E N T I O N  I S  W O R T H  A P O U N D  O F  C U R E

VERACODE STATE OF SOFTWARE SECURITY 202356

Establish Application 
Lifecycle Management
It’s often an uncomfortable organizational discussion. 

Who owns an application? 

• The business leaders that feel they are the primary stakeholder?  
• The engineering group that develops and maintains the application?  
• The end users that the application serves?  
• The CIO and IT that deal with the operations, data, and migrations?  
• Or the person who is called the application owner who left two years ago? 

Oops. Yep.

3Step

The full discussion of application lifecycle management is beyond 
the scope of this document, but the data we have presented on flaw 
accumulation over time makes it something we think needs to be 
considered to deliver a future-ready program.

EngineersFormer
Employee

End UserCIO + IT

Business
Leaders



S E C T I O N  S E V E NA N  O U N C E  O F  P R E V E N T I O N  I S  W O R T H  A P O U N D  O F  C U R E

VERACODE STATE OF SOFTWARE SECURITY 2023 57

Don’t get hung up on the daunting project of 
creating an exhaustively complete inventory 
of applications and owners up front. Get going 
when you have the required information for a few 
applications, and build your pipeline. If you try to 
complete an inventory before progressing further 
with efforts to establish lifecycle controls, you’ll 
never finish. Owners change, developers come and 
go, business stakeholder priorities change, and that 
will complicate any nascent efforts to gain insight 
into the flaw introduction root cause analysis.

Finding the owner or determining the purpose  
of an application is partially the problem. Deciding 
that an application is needed is the easy part, but 
deciding how long that application should be around  
might be something to which some more attention  
is given. We can’t make these decisions for you,  
but we can call attention to the upward trend in  
flaw accumulation that is evident after the first  
year and a half (Figures 18, 21, and 22) that indicates  
that something is happening. Many decisions and  
potentially also inaction come to bear on the 
application. If they are not accounted for, then 
should we accept that older applications are 
inevitably going to introduce flaws when we  
touch them and then accumulate those flaws?

Investigate what the supportability and quality  
phases look like in your organization to determine  
why they occur. Once you do, the discussion  
of change management, resource allocation,  
or organizational controls can occur. 

Risk appetite or tolerance might also play into what 
is acceptable given what speed is required, so long as 
all are aware of what is accumulating. Those pushing 
for speed need to see Figures 18, 19, 20, 21, and 22 
but so do folks that say that resources are scarce. As 
we mentioned before, we understand that complete 
rewrites are sometimes unacceptably expensive in 
terms of resources so examining if an application is 
still fit for purpose after five years might be a better 
way of approaching things. Initial discussions could 
lead to planned obsolescence for some applications 
and some form of review of the processes and quality 
control measures involved in continuous product 
engineering. These ideas to improve supportability 
over time lead us back to the idea of introducing 
and maturing the practice of application lifecycle 
management. 



S E C T I O N  E I G H T A P P E N D I X

VERACODE STATE OF SOFTWARE SECURITY 202358

Next Steps:

VERACODE STATE OF SOFTWARE SECURITY 202358

S E C T I O N  S E V E N A N  O U N C E  O F  P R E V E N T I O N  I S  W O R T H  A P O U N D  O F  C U R E

Now that you’ve seen the predictable patterns of 
flaw introduction, realized the fragility of open-source 
ecosystems and delved with us into the hard data to 
understand what factors go into flaw introduction, 
faster remediation, and lower security debt regardless 
of the language, we hope you are more confident in 
taking our recommended necessary steps to improve 
your application security program in 2023 and beyond.

We’d love to continue to help you on your journey. 

If you’d like to leverage Veracode’s all-in-one modern 
cloud application security solution, or even just 
learn how to unify and better train your security and 
development teams, please reach out to our team or 
schedule a demo with one of our experts.

Schedule a Demo

https://info.veracode.com/veracode-solution-demo.html


S E C T I O N  E I G H TA P P E N D I X

VERACODE STATE OF SOFTWARE SECURITY 2023 59

Appendix 
59	 Methodology

60	 A Note of Mass Closures

Section Eight

VERACODE STATE OF SOFTWARE SECURITY 2023 59



S E C T I O N  E I G H T A P P E N D I X

VERACODE STATE OF SOFTWARE SECURITY 202360

Methodology
The data represents large and small companies, commercial software suppliers, 
software outsourcers, and open-source projects.7 In most analyses, an application 
was counted only once, even if it was submitted multiple times as vulnerabilities 
were remediated and new versions uploaded. For software composition analysis, 
each application is examined for third-party library information and dependencies. 
These are generally collected through the application’s build system. Any library 
dependencies are checked against a database of known flaws.

The report contains findings about applications that were subjected to static 
analysis, dynamic analysis, software composition analysis, and/or manual 
penetration testing through Veracode’s cloud-based platform. The report considers 
data that was provided by Veracode’s customers (application portfolio information 
such as assurance level, industry, application origin) and information that was 
calculated or derived in the course of Veracode’s analysis (application size, 
application compiler and platform, types of vulnerabilities, and Veracode levels — 
predefined security policies based on the NIST definitions of assurance levels).

7	�Here we mean open-source 
developers who use Veracode 
tools on applications in the same 
way closed-source developers do. 
This is distinct from the software 
composition analysis presented  
in the report.

This research draws from  
the following:

759,445 
applications that used  
all scan types

1,262,147 
dynamic analysis scans

7,522,989 
static analysis scans

18,473,203 
software composition  
analysis scans

All those scans produced:

86 million 
raw static findings

3.7 million 
raw dynamic findings

8.5 million 
raw software composition 
analysis findings



S E C T I O N  E I G H TA P P E N D I X

VERACODE STATE OF SOFTWARE SECURITY 2023 61

A Note on Mass Closures
While preparing the data for our analysis  
for a previous volume in this research series, 
we noticed several large single-day closure 
events. While it’s not strange for a scan  
to discover that dozens, or even hundreds,  
of findings have been fixed (50 percent  
of scans closed fewer than three findings;  
75 percent closed fewer than eight), we 
did find it strange to see some applications 
closing thousands of findings in a single scan. 

Upon further exploration, we found many of 
these to be invalid. These large collections of 
flaws were both added and removed in single 
scans, implying developers may be scanning 
entire filesystems, previous or otherwise 
invalid branches, and when they would 
rescan the valid code, every finding not 
found again would be marked as remediated.  

These “ghost-findings” had a large effect:  
The top one-tenth of one percent of the 
scans (0.1 percent) accounted for almost  
a quarter of all the closed findings. 

These “mass closure” events are still 
occurring and have significant effects on 
measuring flaw persistence and time to 
remediation and were ultimately excluded 
from the analysis.



VERACODE STATE OF SOFTWARE SECURITY 2023A

S E C T I O N  T H R E E W H E R E  W E  A R E

Copyright © 2023 Veracode, Inc. All 
rights reserved. Veracode is a registered 
trademark of Veracode, Inc. in the 
United States and may be registered 
in certain other jurisdictions. All other 
product names, brands or logos belong 
to their respective holders. All other 
trademarks cited herein are property  
of their respective owners.


